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Abstract 
Surface electromyography (EMG) is widely used to evaluate neuromuscular activation; however, its signal quality can 
be influenced by individual anthropometric factors such as body weight, body mass index (BMI), and subcutaneous fat 
thickness. Despite evidence linking body composition to EMG amplitude, limited research has explored these 
relationships in trained athletes, particularly comparing load-bearing lower-limb muscles with non-load-bearing 
upper-limb muscles. This study investigated the relationship between body weight, BMI, and EMG-derived muscle 
activation parameters-maximum amplitude, maximum root mean square (RMS), and average amplitude in competitive 
male footballers. Forty inter-university male footballers (age 23 ± 0.94 years) underwent anthropometric assessment 
(weight, BMI) followed by maximum voluntary contractions (10 s MVCs) of three muscles: biceps brachii, rectus 
femoris, and lateral gastrocnemius. EMG signals were recorded using an IWorx EMG system, and Pearson’s correlation 
analysis was applied (p <0.05). Body weight strongly correlated with BMI (r = 0.743, p = 0.014). Lower-limb muscles 
showed significant associations with BMI, including rectus femoris RMS amplitude (r = 0.646, p = 0.044) and 
gastrocnemius average amplitude (r = 0.649, p = 0.042). Upper-limb (biceps brachii) activation demonstrated weak, 
non-significant correlations. Lower-limb muscles exhibited stronger BMI-related neuromuscular responses than upper 
limbs, likely due to their load-bearing function. Body weight emerged as a more consistent predictor of muscle 
activation than BMI, emphasising the need for refined body composition assessments in sports science. These findings 
support the use of individualised EMG interpretation in athletic training, rehabilitation, and injury prevention. 
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Introduction 
Skeletal muscles, which are managed by complex 

neuromuscular processes, must contract 

simultaneously for human movement. Surface 

electromyography is a common non-invasive 

method for assessing motor unit recruitment, 

firing rate and neuromuscular synchronisation 

during voluntary muscle contractions (1, 2).  In 

sports science, rehabilitation, and ergonomics, 

surface electromyographical (EMG) parameters 

such as maximum amplitude, root mean square 

(RMS), and average amplitude are used to assess 

muscle function (3). However, the reliability of this 

signal may depend on individual anthropometric 

characteristics. EMG reliably considers 

neuromuscular activation in individuals with 

different muscle compositions.  In clinical and 

sports settings, BMI (Body Mass Index) is 

commonly used as an observational indicator of 

body composition, but it does not differentiate 

between overweight and obesity (4). Increased 

adiposity attenuates EMG amplitude due to greater 

skin-electrode distance and the low-pass filtering 

effect of fat tissue, while greater lean mass 

enhances signal amplitude through improved 

motor unit recruitment and force generation 

capacity (5, 6). Compared to upper-limb muscles 

like the biceps brachii, lower-limb muscles like the 

gastrocnemius and rectus femoris are more load-

bearing and active muscles, and they may exhibit 

stronger correlations with body mass index (7, 8). 

The neurobehavioral adaptations of skilled 

athletes are still poorly understood, although 

numerous studies have shown similar effects in 

specific sites or clinical populations (9). The prior  

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY 

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, 

and reproduction in any medium, provided the original work is properly cited. 
 

(Received 19th October 2025; Accepted 13th January 2026; Published 31st January 2026)      



Khan et al.,                                                                                                                                                  Vol 7 ǀ Issue 1 

1722 

 

research frequently looked at individual muscles 

without evaluating the functional variations 

between the upper and lower limbs. This restricts 

our comprehension of how muscles react to 

variations in anthropometry. Furthermore, less 

obvious connections between body mass, muscle 

activation, and functional performance may be lost 

if body mass index is still used, as weight is a 

stronger predictor than BMI of body composition.  

Although BMI is partially derived from body 

weight, it represents a normalised ratio of weight 

to height and does not reflect the absolute 

mechanical load acting on the musculoskeletal 

system. Body weight directly influences joint 

loading, force requirements, and muscle activation 

during physical activity, whereas BMI does not 

distinguish between lean and fat mass. 

Consequently, BMI may obscure functionally 

meaningful relationships between body mass and 

neuromuscular responses, making body weight a 

more sensitive predictor than BMI in studies 

examining acute muscle activation (10, 11). Even 

though there is evidence that anthropometric 

parameters impact the quality of EMG signals, it is 

still unclear how much weight and BMI affect 

neuromuscular activation in competitive athletes, 

especially in both load-bearing lower limbs and 

non-load-bearing upper limbs. To improve EMG 

interpretation in sports performance monitoring, 

injury prevention, and rehabilitation, this gap must 

be filled. 

Therefore, this study aims to determine how 

anthropometric parameters (body mass and BMI) 

and EMG parameters (maximum amplitude, RMS, 

and mean amplitude) relate to three functionally 

different muscles in inter-university-level football 

players. The researchers predicted a stronger 

correlation between body mass and EMG 

parameters, particularly in the weight-bearing 

muscles of the lower extremities, than between 

body mass and BMI. By clarifying these 

connections, this study offers methodological 

viewpoints for neuromuscular evaluation in sports 

populations and contributes to the creation of 

customised training and recovery plans. 
 

Methodology 
Participation 
A total of forty male footballers [n = 40] were 

selected for this study using the convenience 

sampling method. The mean age of the selected 

subjects was 23 ± 0.94 years. All selected 

participants visited the exercise physiology 

laboratory at Jadavpur University's Department of 

Physical Education in Kolkata, West Bengal, India, 

on a designated day during the study period. 

Before beginning the EMG (surface 

electromyography) data collection process, the 

researchers measured the anthropometric 

variables.  

"Inclusion criteria encompassed individuals who 

had participated in at least three inter-university 

football tournaments, ensuring that prior training 

experience would influence the comparison and 

analysis of the data (12). Exclusion criteria 

involved individuals with a history of any injury or 

surgical procedure occurring within the six 

months preceding this study (13). 

Instrumentations 
IWorx Surface EMG analysing software (IWorx 

System, Inc.) utilised here, It was set at a band-pass 

filter of 20–450 Hz and data was collected at a 

sampling rate of 2000 Hz (14). A human muscle 

EMG device (iwire-B3G) and foam solid gel 

disposal electrodes (A-GC-7165, 5×54 mm) were 

used to collect EMG amplitude data. Cotton and 

scrubbing gel were applied to clean the skin, and a 

razor was used to remove hair. A weighing 

machine, stadiometer, and measuring tape were 

utilised to measure anthropometric variables. BMI 

(Body Mass Index) was calculated using the 

formula Equation [1]:  
 

 

BMI = Body Weight in kg / Height in m²   [1] 
 

Experimental Design 
Forty inter-university male footballers were 

recruited using a convenience sampling method. 

Inclusion criteria required participants to have 

competitive playing experience and no history of 

musculoskeletal injury in the recent past. All 

participants first underwent anthropometric 

assessment, including measurements of body 

weight and body mass index (BMI), followed by a 

standardised warm-up protocol. Surface 

electromyography (EMG) recordings were then 

obtained during 10-second maximum voluntary 

contractions (MVC) of the biceps brachii, rectus 

femoris, and lateral gastrocnemius muscles (15). 
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These muscles were selected for their critical 

involvement in football-specific activities such as 

sprinting, kicking, jumping, rapid changes of 

direction, tackling, and upper-body stabilisation 

during match play. The rectus femoris plays a key 

role in knee extension and hip flexion and is highly 

activated during kicking, acceleration, and high-

intensity running (16). The gastrocnemius 

contributes substantially to ankle plantarflexion 

and is heavily engaged during sprinting, jumping, 

and rapid directional changes, making it 

particularly relevant to football performance (17). 

The biceps brachii was included to represent 

upper-limb involvement, as it contributes to arm 

swing during running, balance control, and 

physical contests such as shielding and tackling 

(18). Furthermore, these muscles are commonly 

examined in football-related surface EMG studies 

due to their functional relevance, accessibility, and 

reliable signal quality, allowing meaningful 

interpretation of neuromuscular activation 

patterns in football players (19, 20). 

EMG parameters analysed included maximum 

amplitude, maximum root mean square (RMS) 

amplitude, and average amplitude. Data were 

statistically evaluated using Pearson’s correlation 

to explore the correlation between muscle 

activation and anthropometric variables. Ethical 

clearance, informed consent, and confidentiality 

protocols were strictly followed throughout the 

procedure, as shown in Figure 1. 

 

 
Figure 1: Experimental Design and Data Analysis Workflow 

 

Figure 1 illustrates the experimental design of the 

study, including participant selection (n = 40), 

anthropometric measurements (weight and BMI), 

and electromyographical (EMG) signal acquisition. 

The workflow summarises EMG outcome variables 

(maximum amplitude, average amplitude and 

maximum RMS amplitude) and the statistical 

analysis performed using Pearson correlation in 

SPSS (Statistical Package for the Social Sciences) to 

evaluate relationships between anthropometric 

factors and muscle activation patterns. 

Anthropometric Measurements 
Height was measured using a fixed stadiometer 

(HM01, Ambala, India), and BMI was calculated 

from weight and height, followed by the 
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measurement procedure of NIHR Southampton 

Biomedical Research Centre (21).  

Surface Electromyography  
Participants first underwent an orientation session 

that outlined the research objectives, equipment 

used, data collection procedures, and experimental 

task details. To ensure proper preparation, 

selected subjects completed a standardized three-

minute warm-up protocol, incorporating running 

and dynamic stretches targeting the relevant joints 

and muscles (22). Following the warm-up, 

participants performed 10-second maximum 

voluntary contractions for the biceps brachii, 

rectus femoris, and lateral calf muscles (22), 

maintaining predefined positions. During these 

contractions, surface electromyography (EMG) 

data were recorded for selected muscles. 

Measurements included maximum EMG amplitude 

(maxEMGamp), maximum root mean square 

amplitude (maxRMSamp) and average EMG 

amplitude (avgEMGamp). Before the electrode 

placement, the skin over the target muscles was 

prepared in accordance with the 

recommendations of the Surface 

Electromyography for the Non-Invasive 

Assessment of Muscles (SENIAM) guidelines to 

ensure optimal signal quality and minimise skin 

electrode impedance. Hair at the electrode sites 

was removed using a disposable razor, if present. 

The skin was then gently abraded with fine 

abrasive material to remove dead skin cells, 

followed by cleansing with 70% isopropyl alcohol 

swabs to eliminate oils and sweat. The skin was 

allowed to dry completely before electrode 

placement (23). This standardised skin 

preparation procedure was performed 

consistently for all participants to reduce motion 

artefacts and enhance the reliability of the 

recorded EMG signals. 
 

 
Figure 2: Represents the Electromyography Data Collection Procedure for the (A) Biceps Brachii Muscle, 

(B) Rectus Femoris Muscle, and (C) Calf Lateral Muscle 
 

For the biceps brachii in Figure 2 (A), participants 

were seated with the shoulder in a neutral 

position, the elbow flexed at 90°, and the forearm 

supinated; the arm was stabilized against 

movement using straps across the distal humerus 

and torso, with the elbow supported on a padded 

surface (24). The electrodes were placed over the 

belly of the biceps brachii muscle, aligned parallel 

to the muscle fibres along the arm. The reference 

electrode was placed on the lateral epicondyle of 

the humerus to reduce signal noise (25).  

The subjects were seated on a firm chair or testing 

bench with the hips and knees flexed at 

approximately 90 degrees. The trunk remained 

upright and stabilised using straps for fixed 

resistance. The subjects were instructed to 

perform a maximal isometric knee extension with 

a strap placed just above the ankle, without 

allowing actual movement in Figure 2(B). For the 

rectus femoris muscle. The electrodes were placed 

on the midline of the muscle at its midpoint, and 

the reference electrode was placed on the patella 

to minimise interference (23). 

The subject should be in a seated position in Figure 

2(C), with the knee fully extended and the ankle 

fixed at a 90° neutral position. A rigid mechanical 

setup was used to provide strong, immovable 

resistance. The subject is instructed to perform a 

unilateral isometric plantar flexion by pushing the 

forefoot downward against the resistance. The hip 
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must be fixated to avoid compensatory movement 

(24). The electrodes were placed at one-third of 

the distance between the head of the fibula and the 

calcaneus on the lateral side of the calf, aligned 

parallel to the muscle fibres. The reference 

electrode was placed on the patella to reduce 

interference (25). 

Data Processing  
Participants were trained on each exercise before 

data collection to ensure correct performance. 

Clear instructions were given to them to perform 

maximum voluntary contractions. They were 

asked to exert their maximal force for 3 to 5 

seconds, hold it for 3 seconds, and then gradually 

decrease the force over 3 seconds (25). Maximum 

surface electromyography amplitude 

(maxEMGamp), maximum root mean square 

amplitude (maxRMSamp), and average surface 

electromyography amplitude (avgEMGamp) data 

were collected from 10 seconds of maximum 

voluntary contraction (MVC) (24).  Surface 

electromyography (EMG) signals were recorded 

bilaterally from each target muscle. The mean of 

the left and right muscle activation values was 

subsequently calculated and used as the 

representative EMG amplitude for each selected 

muscle (25). 

EMG Normalization 
Peak EMG normalization methods were applied to 

normalize the raw EMG values (Equation [2]). Each 

participant performed three trials targeting 

muscles, and the average of the three trials was 

recorded as the actual value (3). 
 

 

Normalized EMG=
𝐏𝐞𝐚𝐤 𝐓𝐫𝐢𝐚𝐥𝟏+𝐏𝐞𝐚𝐤 𝐓𝐫𝐢𝐚𝐥𝟐+𝐏𝐞𝐚𝐤 𝐓𝐫𝐢𝐚𝐥𝟑

𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐭𝐫𝐚𝐢𝐥𝐬
                        [2] 

 
 

Statistical Analysis 
Descriptive statistics were used to summarise the 

general characteristics of the participants, with all 

continuous variables presented as mean ± 

standard deviation (SD). Before inferential 

analysis, the normality of data distribution for each 

measured variable was examined using the 

Shapiro–Wilk test. Variables that satisfied the 

assumption of normality were subsequently 

included in parametric analyses. Pearson’s 

product-moment correlation coefficient was 

employed to examine the strength and direction of 

the relationships between anthropometric 

variables (body weight and BMI) and surface 

electromyographical (EMG) activity of the selected 

muscles during maximum voluntary contractions. 

Correlation coefficients were interpreted using 

conventional thresholds to describe the magnitude 

of association. Statistical significance was set a 

priori at p < 0.05. All statistical analyses were 

conducted using IBM SPSS Statistics version 30.0 

(IBM Corp., Armonk, NY, USA). 

 

Results 
Table 1: Pearson Correlation between Anthropometric Variables and Electromyographical Parameters of 

the Biceps Brachii Muscle 
Selected 

Variables 

Mean ± SD Selected 

Variables 

Mean ± SD Number of 

Subjects 

Pearson's 

Correlation 

Coefficient(r) 

Sig. 

Weight (kg)  

 

63.93±7.28 

BMI (kg/m2) 22.56±2.43  

 

 

 

n=40 

0.743 0.014* 

max EMGamp 3.76 ± 1.48 0.311 0.382 

maxRMSamp 0.56 ± 0.37 0.616 0.058 

avgEMGamp 0.80 ± 0.22 0.496 0.145 

maxEMGamp 

(mV) 

 

3.76 ± 1.48 

BMI 22.56 ± 2.43 -0.113 0.756 

maxRMSamp 0.56 ± 0.37 0.290 0.417 

 avgEMGamp 0.80 ± 0.22 0.534 0.112 

maxRMSamp (mV) 0.56 ± 0.37 BMI 22.56 ± 2.43 -0.355 0.17 

avgEMGamp 0.80 ± 0.22 0.191 0.597 

avgEMGamp (mV) 0.80 ± 0.22 BMI 22.56 ± 2.43 0.176 0.47 

 

Table 1 presents the Pearson correlation analysis 

between body composition variables (weight and 

BMI) and electromyographical parameters of the 

biceps brachii muscle, including maximum EMG 
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amplitude, maximum RMS amplitude, and average 

EMG amplitude in 40 participants. Mean values, 

correlation coefficients (r), and significance levels 

are reported to assess the relationship between 

anthropometric factors and muscle activation. 

Pearson’s correlation analysis calculated the value 

between weight and BMI, which indicates that 

higher body weight (63.93 ± 7.28 kg) and BMI 

(22.56 ± 2.43 kg/m2) are indicating that higher 

body weight was associated with a higher BMI 

value. The calculated value also displayed that 

weight was not statistically significant in relation 

to maximum EMG amplitude, RMS amplitude and 

average EMG amplitude.  

This finding suggests that weight is strongly 

correlated with BMI and it is also not strongly 

associated with neuromuscular activity 

parameters as measured by surface 

electromyography amplitude indicators.  The 

correlation analysis between maximum EMG 

amplitude (3.76 ± 1.48 mV) and BMI (22.56 ± 2.43 

kg/m2) indicate no significant relationships (r = –

0.113, p = 0.756). Maximum EMG amplitude and 

maximum RMS amplitude revealed a weak and 

non-significant positive correlation (r = 0.290, p = 

0.417). Average EMG amplitude (r = 0.534, p = 

0.112) also shows moderate and non-significant 

correlation with maximum EMG amplitudes. These 

findings suggested that maximal muscle activation 

levels, as measured by maximum EMG amplitude, 

were not significantly related to body composition 

(BMI) or to other amplitude parameters under the 

current experimental conditions. RMS amplitude 

(0.56 ± 0.37 mV) revealed a statistically non-

significant and negative correlation with BMI 

(22.56 ± 2.43; r = –0.355, p = 0.170), suggesting 

that muscle activation intensity was not influenced 

by participants’ body composition. Similarly, RMS 

amplitude indicates a weak and non-significant 

positive relationship with average EMG amplitude 

(r = 0.191, p = 0.597*). These values indicate that 

differences in RMS amplitude were independent of 

BMI and average neuromuscular activation 

patterns.  A weak, positive, and non-significant 

correlation was found for the average EMG 

amplitude (0.80 ± 0.22 mV) with BMI (22.56 ± 

2.43; r = 0.176, p = 0.470). These results specify 

that average muscle activation, as reflected by 

mean EMG amplitude, was not significantly related 

to BMI.  
 

Table 2: Pearson Correlation between Anthropometric Variables and Electromyographical Parameters of 

the Rectus Femoris Muscle 
Selected  

Variables 

Mean Selected 

Variables 

Mean Number of 

Subjects 

Pearson's 

Correlation 

Coefficient (r) 

Sig. 

Weight (Kg) 63.93±7.28 BMI (kg/m2) 22.56±2.43  

 

 

 

n=40 

0.743 0.014* 

MaxEMGamp 2.28 ± 0.61 0.366 0.298 

maxRMSamp 0.64 ± 0.24 0.646 * 0.044 * 

avgEMGamp 0.80 ± 0.16 0.300 0.399 

 

MaxEMGamp (mV) 

2.28 ± 0.61 BMI 22.56±2.43 0.051 0.889 

maxRMSamp 0.64 ± 0.24 0.010 0.978 

avgEMGamp 0.80 ± 0.16 0.036 0.921 

maxRMSamp(mV) 0.64 ± 0.24 BMI 22.56±2.43 -0.355 0.314 

avgEMGamp 0.80 ± 0.16 -0.018 0.961 

avgEMGamp   (mV) 0.80 ± 0.16 BMI 22.56±2.43 0.176 0.627 

 

Table 2 summarises the Pearson correlation 

results examining the relationship between body 

composition indicators (weight and BMI) and 

electromyographical parameters of the rectus 

femoris muscle in 40 participants. Descriptive 

statistics, correlation coefficients (r), and 

significance values are provided for EMG 

amplitude and RMS measures. 

Weight showed a positive and non-significant 

correlation with maximum EMG amplitude (2.28 ± 

0.61 mV; r = 0.366, p = 0.298) and with average 

EMG amplitude (0.80 ± 0.16 mV; r = 0.300, p = 

0.399) for the rectus femoris muscles' 

electromyographical activity. Although weight 

RMS amplitude (0.64 ± 0.24 mV; r = 0.646, p = 

0.044) showed a significant positive correlation, 

suggesting that players with higher body weight 
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can demonstrate greater overall neuromuscular 

activation. Maximum EMG amplitude (2.28 ± 0.61 

mV) and BMI found no significant correlation 

(22.56 ± 2.43; r = 0.051, p = 0.889). Maximum RMS 

amplitude (0.64 ± 0.24 mV; r = 0.010, p = 0.978), 

average EMG amplitude (M = 0.80 ± 0.16 mV; r = 

0.036, p = 0.921). and the maximum EMG 

amplitude were not significantly correlated.  

Analysis of RMS amplitude (0.64 ± 0.24 mV) found 

no statistically significant relationships with BMI 

(22.56 ± 2.43; r = –0.355, p = 0.314), indicating that 

overall muscle activation level was not influenced 

by body composition. RMS amplitude was not 

significantly correlated with average EMG 

amplitude (0.80 ± 0.16 mV; r = –0.018, p = 0.961). 

Average EMG amplitude (0.80 ± 0.16 mV) showed 

a weak, non-significant positive correlation with 

BMI (22.56 ± 2.43; r = 0.176, p = 0.627).  
 

Table 3: Pearson Correlation between Anthropometric Variables and Electromyographical Parameters of 

the Calf Lateral Muscle 
Selected Variables Mean Selected 

Variables 

Mean Number of 

Subjects 

Pearson's 

Correlation 

Coefficient(r) 

Sig. 

Weight (Kg)  

 

63.93±7.28 

BMI (kg/m2) 22.56±2.43  

 

 

 

n=40 

0.743 0.014* 

max EMGamp 2.38 ± 0.92 0.444 0.199 

maxRMSamp 0.49 ± 0.18 0.139 0.701 

avgEMGamp 0.80 ± 0.11 0.122 0.736 

maxEMGamp  (mV)      2.38 ± 0.92 BMI 22.56±2.43 0.186 0.607 

maxRMSamp 0.49 ± 0.18 0.608 0.062 

avgEMGamp 0.80 ± 0.11 0.256 0.475 

maxRMSamp  mV) 0.49 ± 0.18 BMI 22.56±2.43 0.136 0.707 

avgEMGamp 0.80 ± 0.11 0.390 0.265 

AvgEMGamp (mV) 0.80 ± 0.11 BMI 22.56±2.43 0.649 * 0.042 * 
 

Table 3 indicates the relationship between 

anthropometric variables (weight and BMI) and 

EMG-derived activity of the lateral calf muscles in 

40 participants. Electromyographical signal 

outcomes include maximum and average EMG 

amplitudes as well as RMS values. Statistical 

associations are quantified using Pearson’s 

correlation coefficients with corresponding 

significance levels.  

Body weight was not significantly correlated with 

electromyographical parameters. Specifically, 

maximum EMG amplitude (2.38 ± 0.92 mV; r = 

0.444, p = 0.199) was not significantly associated 

with weight. Maximum RMS amplitude (0.49 ± 0.18 

mV; r = 0.139, p = 0.701) and average EMG 

amplitude (0.80 ± 0.11 mV; r = 0.122, p = 0.736) 

also revealed no statistically significant 

correlation.  The calculated maximum EMG 

amplitude was 2.38 ± 0.92 mV, which indicates no 

significant correlation with BMI (22.56 ± 2.43; r = 

0.186, p = 0.607). RMS amplitude (0.49 ± 0.18 mV; 

r = 0.608, p = 0.062) and average EMG amplitude 

(M = 0.80 ± 0.11 mV; r = 0.256, p = 0.475) were not 

statistically significantly correlated with maximum 

EMG amplitude. Correlation analysis of RMS 

amplitude (0.49 ± 0.18 mV) showed non-

significant correlation with BMI (22.56 ± 2.43; r = 

0.136, p = 0.707), suggesting that the muscle 

activation intensity was not influenced by 

participants’ body composition. And also, 

maximum RMS amplitude was not significantly 

associated with average EMG amplitude (0.80 ± 

0.11 mV; r = 0.390, p = 0.265), indicating that 

variations in RMS measures were not reflected in 

electromyographical activity. Average EMG 

amplitude (0.80 ± 0.11 mV) was significantly 

positively correlated with BMI (22.56 ± 2.43; r = 

0.649, p = 0.042), suggesting that participants with 

higher BMI lead to greater mean 

electromyographical activation. Pearson’s 

correlation analysis was performed to investigate 

the relationships between body weight, BMI, and 

surface electromyographical (EMG) parameters 

for calf lateral muscles. Body weight was not 

significantly correlated with electromyographical 

parameters. Specifically, maximum EMG amplitude 

(2.38 ± 0.92 mV; r = 0.444, p = 0.199) was non-

significantly associated with weight. Maximum 

RMS amplitude (0.49 ± 0.18 mV; r = 0.139, p = 

0.701) and average EMG amplitude (0.80 ± 0.11 

mV; r = 0.122, p = 0.736) also revealed no 

statistically significant correlation. The calculated 

maximum EMG amplitude was 2.38 ± 0.92 mV, 

which indicates a non-significant correlation with 

BMI (22.56 ± 2.43; r = 0.186, p = 0.607). Maximum 

RMS amplitude (0.49 ± 0.18 mV; r = 0.608, p = 

0.062) and average EMG amplitude (M = 0.80 ± 

0.11 mV; r = 0.256, p = 0.475) were not statistically 
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significantly correlated with maximum EMG 

amplitude. Correlation analysis of maximum RMS 

amplitude (0.49 ± 0.18 mV) showed no significant 

correlation with BMI (22.56 ± 2.43; r = 0.136, p = 

0.707), suggesting that the muscle activation 

intensity was not influenced by participants’ body 

composition. And also, maximum RMS amplitude 

was not significantly associated with average EMG 

amplitude (0.80 ± 0.11 mV; r = 0.390, p = 0.265), 

indicating that variations in RMS measures were 

not reflected in electromyographical activity. 

Average EMG amplitude (0.80 ± 0.11 mV) was 

significantly positively correlated with BMI (22.56 

± 2.43; r = 0.649, p = 0.042), suggesting that 

participants with higher BMI have greater mean 

electromyographical activation.  
 

Discussion 
The present study aimed to explore the 

relationships between body composition, 

specifically body weight and Body Mass Index 

(BMI) and muscle activation characteristics as 

measured by surface electromyography (EMG) in 

three key skeletal muscles: the biceps brachii, 

rectus femoris, and lateral gastrocnemius (calf 

lateral muscle). Understanding these associations 

was critical because muscle activation profiles can 

offer insights into neuromuscular health, 

functional capacity, and the effects of body 

composition on muscle performance.  

While statistically significant correlations were 

identified, such relationships do not establish 

direct causation or explain underlying physiolo-

gical mechanisms. The findings, therefore, 

represent associative patterns rather than 

definitive cause–effect links. Interpretation of the 

physiological implications should be made within 

the limitations of the correlational design, and 

future controlled studies are warranted. 

A consistent and statistically significant positive 

correlation was found between body weight and 

BMI, affirming that BMI was a valid, albeit limited, 

anthropometric index of body mass relative to 

height. However, the relationships between body 

composition and EMG-derived muscle activity 

were less straightforward and varied depending 

on the muscle group examined.  

This variability across muscle groups was not 

unexpected, given that EMG signals are affected by 

a range of physiological and anatomical factors, 

including muscle fibres type distribution, 

subcutaneous fat thickness, muscle architecture, 

electrode placement, and motor unit recruitment 

patterns (2, 26). Additionally, the EMG signal was 

inherently sensitive to crosstalk and electrode-

skin impedance, both of which can influence the 

amplitude and reliability of measurements (15).  

In the biceps brachii, the correlations between 

EMG variables (maximum amplitude, RMS 

amplitude, and average EMG) and body 

composition were generally positive but not 

statistically significant. This suggests that higher 

body weight may contribute to slightly elevated 

muscle activity, likely due to increased muscle 

mass or neuromuscular efficiency, though these 

trends did not achieve statistical robustness. 

Another research finding is that greater fat-free 

mass is associated with enhanced muscle strength 

and size, which, in turn, may influence EMG 

characteristics (6). However, the non-significance 

may reflect individual variability in muscle 

architecture or training history, as EMG amplitude 

is not only a function of force generation but also 

of motor unit synchronisation and firing rate (27). 

Interestingly, BMI showed weaker and non-

significant associations with all EMG parameters. 

This supports prior critiques that BMI may 

inadequately capture body composition, particu-

larly in distinguishing between lean and fat mass 

(4, 26). In lean individuals or those with high 

muscle mass, BMI can be misleading and may not 

correspond to functional muscle properties (28). 

In the rectus femoris muscle, a statistically 

significant relationship was observed between 

body weight and RMS amplitude. RMS is 

considered a reliable index of muscle activation 

level and reflects the number and synchronisation 

of active motor units (24). The observed positive 

association indicates that individuals with greater 

body weight tend to show higher quadriceps 

activation, potentially due to increased mechanical 

demand or muscle cross-sectional area (29). 

Although BMI again showed weaker associations, 

it is worth noting that the quadriceps femoris 

group is a weight-bearing, locomotor muscle, more 

likely to respond to habitual physical activity and 

mechanical loading than upper limb muscles (30). 

Some studies suggest that increased muscle size in 

the lower limbs can enhance activation patterns, 

particularly in activities such as squatting or 

walking (31). 
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Nonetheless, the lack of significance for other EMG 

parameters may be attributed to the complexity of 

neuromuscular control in the lower limbs, where 

synergistic muscle activation and joint angle 

variability affect EMG readings (32). Subcutaneous 

fat in the thigh region may also act as a low-pass 

filter, diminishing EMG signal amplitude (33). 

The lateral gastrocnemius showed one of the most 

intriguing findings: a significant positive 

correlation between average EMG amplitude and 

BMI. This result suggests that individuals with 

higher BMI may engage the calf muscle more 

intensely during tasks, possibly due to increased 

load-bearing demands on the lower limbs (8). This 

is consistent with previous studies indicating that 

overweight and obese individuals demonstrate 

altered muscle recruitment patterns and increased 

postural activity in the triceps muscles during 

walking and standing (34). It is notable that while 

RMS and maximum EMG amplitudes also trended 

positively, these did not reach significance. This 

pattern implies a consistent but sub-threshold 

relationship, which may become clearer in a larger 

sample. Moreover, gastrocnemius muscle function 

is highly responsive to both force output and 

balance control, making it an effective target for 

EMG-based functional assessments. Across the 

three muscles, a common theme is that body 

weight appears to influence EMG activity more 

consistently than BMI, especially in the lower 

limbs. This supports the notion that body weight 

may be a better predictor of absolute muscle load, 

while BMI lacks the specificity needed to explain 

functional muscle dynamics (35). Furthermore, 

EMG signal reliability can be compromised in 

individuals with greater adiposity, which 

introduces attenuation and distortion of the signal 

(2). The differences in correlation strength 

between upper and lower body muscles may also 

reflect functional and anatomical specialisations. 

Upper limb muscles like the biceps brachii are 

more involved in fine motor tasks and voluntary 

movements, whereas lower limb muscles such as 

the rectus femoris and gastrocnemius are 

specialised for load-bearing and postural control. 

These functional roles may influence baseline 

muscle tone and EMG responsiveness (29).  
 

 

 

 

Conclusion 
This study examined the associations between 

body composition metrics, specifically body 

weight and body mass index (BMI) and surface 

electromyographical (EMG) activity in the biceps 

brachii (BB), rectus femoris (RF), and lateral 

gastrocnemius (LG) muscles of trained football 

athletes. The analysis revealed that body weight 

demonstrated a consistent and significant positive 

correlation with EMG activity across all three 

muscles. Notably, higher body weight was 

associated with increased maximal and average 

EMG amplitudes in the lateral gastrocnemius, 

enhanced average EMG in the rectus femoris, and 

elevated maximal EMG in the biceps brachii. These 

findings suggest a pronounced influence of body 

weight on muscle activation, particularly in load-

bearing musculature. In contrast, BMI exhibited 

weaker and more variable relationships. A 

marginal positive association was observed 

between BMI and maximal EMG in the rectus 

femoris, while non-significant correlations were 

found between BMI and EMG parameters in the 

biceps brachii muscle and lateral gastrocnemius 

muscles. Overall, the results underscore the 

superior predictive value of body weight over BMI 

in relation to neuromuscular activation patterns. 

This highlights the relevance of incorporating 

individualised anthropometric profiles, especially 

absolute body mass, when interpreting EMG 

signals for performance assessment and tailored 

athletic programming in sports science research. 
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