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Abstract 
Computational diagnosis of rare pathologies in high-resolution 3D medical images is a challenging task, as it suffers 
from scarce labelled data in the presence of subtle disease presentation and demand for effectual volumetric 
representations. Towards this goal, this work introduces a transformer-based self-supervised learning framework that 
uses abundant unlabelled MRI and CT scans to learn universal anatomical representations without requiring manual 
label annotation. The model features masked volume modelling, in which randomly occluded 3D patches are modelled 
to deal with long-range spatial dependencies. Following pre-training, the model is fine-tuned with a few labelled 
samples from rare brain and lung pathologies. Experimental results on the BraTS 2021 and LIDC-IDRI datasets show 
that its performance surpasses supervised U-Net and ResNet-3D baselines with higher Dice and AUC-ROC scores. 
Attention maps offer interpretability by highlighting the clinically relevant areas that affect model predictions. The 
findings suggest self-supervised transformer architectures as a scalable and data-efficient approach to rare pathology 
detection in 3D medical imaging. 

Keywords: Deep Learning, Masked Volume Modelling, Medical AI, Rare Disease Detection, Transformer Models, 
Volumetric Image Analysis. 
 

Introduction 
Imaging modalities like MRI, computed 

tomography (CT) and positron emission 

tomography (PET) are important in clinical 

management as they provide a means to visualize 

both anatomical and functional abnormalities in 

three-dimensional format (1–3). While the 

technology in this area has become more 

sophisticated, especially detecting rare 

pathologies in high resolution 3D images is still a 

difficult task. These diseases typically present with 

subtle radiological findings and are rare in clinical 

datasets; therefore, the labelled samples available 

for training classical deep learning models are 

vastly restricted (4, 5). Supervised designs 

including U-Net and 3D residual networks have 

shown successful performance on common 

segmentation or classification tasks, yet their 

effectiveness is limited for rare diseases because 

of very large labelled data (6, 7). Manual labelling 

of volumetric imaging data is labour intensive, 

time-consuming and subject to interobserver 

variability, illustrating the constraints of fully 

supervised methods (8). Self-supervised learning 

(SSL) offers a potential alternative, as it allows 

models to learn invariant features from the 

unlabelled volumetric data itself, typically 

through pretext tasks such as contrastive learning, 

masked volume prediction, or predicting 

geometric transformations (9–12). SSL methods 

have shown better generalization with label 

scarcity and class imbalance, thus are suitable for 

rare disease study (13). Simultaneous 

developments have also revolutionized the field of 

computer vision using transformer-based 

architectures. Developed for natural language 

processing, transformers use global self-attention 

to model long-range dependencies that are 

challenging for convolutional networks (14, 15).  
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When applied to 3D medical imaging, transformers 

may also be capable of capturing more intricate  

spatial relationships over well-defined volumetric 

patches and have potential for better recognition 

of diffuse, irregular, or spatially complex lesions 

(16–18). These characteristics provide a solid base 

for implementing models that can detect rare 

pathological findings more robustly. Combining 

SSL with transformer encoders has proved very 

promising recently, and achieved great 

improvements in tasks like segmentation, 

classification, and anomaly detection in medical 

imaging (19–22). On one hand, SSL-based 

pretraining enriches the feature representation 

while transformers do multi-scale contextual 

modelling, and both can overcome these two 

limitations: the limitation of data sufficiency and 

3D complex spatial structure. However, this 

combined strategy is still rarely used in rare 

pathology detection. To the best of our knowledge, 

this study is the first to present a transformer-

based self-supervised learning model specifically 

designed for rare pathology detection in high-

resolution 3D MRI and CT images. The model uses 

masked volume modelling to recover anatomical 

representations from unlabelled data and is 

subsequently fine-tuned on smaller sets of labels 

for two rare brain and lung abnormalities. The 

proposed method, with benchmark datasets 

including BraTS 2021 for glioma assessment (23) 

and LIDC-IDRI for lung nodule analysis (24), 

improves results than conventional convolutional 

models. This finding underscores the promise of 

SSL-boosted transformers to provide reliable, 

interpretable, and scalable diagnostic support in 

clinical routines where there is a lack of annotated 

data for rare diseases (25). 
 

 

 

 

Methodology  
Dataset and Pre-processing 
Our proposed framework is tested on different 

public and clinical datasets of high-resolution 3D 

medical images. For the rare pathology, datasets 

like BraTS 2021 (Brain Tumour), LIDC-IDRI (lung 

nodule) along with a private dataset of rare 

pathologies including brain and lung cancer have 

been used. The BraTS 2021 dataset comprises 

annotated 3D MRI brain images for glioma 

segmentation and diagnosis tasks. BraTS 2021 is a 

compilation of MRI images from adult glioma 

patients, comprising four structural MRI 

modalities. The dataset includes T1, T1c, T2, T2-

FLAIR MRI modalities and their respective ground 

truth annotations of tumorous regions. The 

collection comprises 1251 scans accompanied by 

truth annotations of tumorous areas, featuring 

four modalities for each case: The collection 

includes T1 sequences, T1 post-contrast sequences 

(T1Gd), T2 sequences, and T2-FLAIR sequences for 

analysis. The BraTS 2021 dataset builds on the 

BraTS 2020 dataset by including 660 cases and 

2640 mpMRI scans. Researchers use this dataset to 

test algorithms that identify similar tumour 

compartmentalization patterns. 9. The BraTS 2021 

dataset shown in Figure 1 contains brain tumours 

that are gliomas originating from the brain's glial 

cells. Gliomas fall into two distinct categories, 

which are primary malignant and benign. The data 

set does not provide information about which 

specific subtypes of gliomas were included in the 

analysis. Overall, the BraTS 2021 dataset is a 

collection of structural MRI scans from adult brain 

glioma patients with four structural modalities and 

their ground truth segmentation masks of 

tumorous areas. The dataset comprises 1251 scans 

and is employed for the assessment of 

computational algorithms analysing tumour 

compartmentalization. The brain tumours in the 

dataset are gliomas; they can be malignant or 

benign.  
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Figure 1: Sample images from BraTS 2021 

 

LIDC-IDRI: The LIDC-IDRI database contains 3D CT 

scans from patients who have lung nodules, which 

radiologists evaluate to determine if they are 

benign or malignant. Diagnostic thoracic CT scans 

for lung cancer screening are in the LIDC-IDRI 

image collection. The current dataset contains 

1010 patients, which includes both 399 pilot CT 

cases and 611 more patient cases. The LIDC-IDRI 

collection shown in Figure 2 holds multiple lung CT 

scan images with their labels documented in a CSV 

file. Each 3D model of lung nodules in the dataset 

comes with four annotations. The public 

LIDC/IDRI dataset provides size measurements for 

each lung nodule in the collection. No other public 

collection exceeds LIDC-IDRI in terms of lung 

cancer image data for developing and validating 

computer-aided detection systems and supporting 

lung cancer research. The findings of this study 

support academic research and have practical uses 

in various areas, such as detecting and classifying 

lung nodules. The complete LIDC-IDRI dataset is 

accessible to users via the website's Data Access 

section. 

 

 
Figure 2: Sample LIDC-IDRI dataset 

 

A relatively small clinical dataset is collected for 

low-incidence diseases that are characterized by 

subtle patterns and have labels that are generated 

by experienced specialists. Some of the pre-

processing techniques are then used to normalize 

the input data. Rescaling and Normalization: All 

images are then resized and re-sampled to have 

isotropic voxel dimensions, and pixel values are 

also scaled to the range [0, 1]. Cropping/Padding: 

In order to have uniform input sizes, the scans are 

resized and cropped or padded around areas of 

interest. In the second phase of the supervised 

fine-tuning, data augmentation methods like 

rotation, scaling, flipping, and elastic deformation 

are used because of the limited number of labelled 

samples. The sample pre-processed image is 

shown in Figure 3. 
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Figure 3: Pre-Processed Images 

 

Architecture of Transformer for 3D 

Medical Imaging 
The Vision Transformer (ViT) for 3D medical 

imaging is used by changing its input to work with 

volumetric instead of image data. 3D medical scans 

are divided into 3D patches, and each patch is 

modelled as a sequence token, similar to ViT. The 

overall proposed system is shown in Figure 4. 

 

 
Figure 4: End-to-End SSL Pipeline for 3D Pathology Detection 

 

The 3D medical scan is then divided into cubic 

patches of the desired size (for example, 16x16x16 

vowels per patch), and each patch is then mapped 

to a 1D vector. This is illustrated in Figure 5. To 

facilitate this, the patch embedding is further 

linearly projected into a lower dimensional feature 

space that can be processed by the self-attention of 

the transformer. Because transformers do not have 

a built-in mechanism for capturing positional 

information, positional Encoding are incorporated 

into the patch embedding so that the model still 

maintains the spatial relations of patches within 

the 3D scan. 

 

 
Figure 5: 3D Patch Tokenization and Positional Encoding 
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For a single head, the self-attention equation is given in Equation [1].  

Attention (Q,K,V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉     [1] 

Where Q, K, V are query, key and value matrices. 𝑑𝑘  

is the dimensionality of the key vectors. The 

transformer uses its self-attention heads to attend 

to the input patches, so the model can attend to 

both local features of the patches and the overall 

context of the scan. This is especially helpful in 

identifying various uncommon pathologies which 

might herald a variety of signs in different sections 

of the scan. 

Self-supervised Pre-training 
The masked patch prediction task is explained in Equation [2]. 

For each 3D patch, 𝑥𝑖 ∈ 𝑅𝑝𝑥𝑝𝑥𝑝 

𝑧𝑖 = 𝑊𝐸 . 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑥𝑖) + 𝐸𝑝𝑜𝑠(𝑖)   [2] 

𝑤ℎ𝑒𝑟𝑒 𝑊𝐸  is the learnable embedding weights and 𝐸𝑝𝑜𝑠(𝑖) is the positional encoding.

 Even during the pre-training phase, the proposed 

method makes use of a masked patch prediction 

task derived from Masked Image Modelling (MIM) 

which is shown in Figure 6. Some of the 3D patches 

within the input scan are randomly selected and 

then occluded and the model is trained to learn the 

occluded patches from the context of the 

surrounding patches. This task also helps in the 

learning of more semantically rich representations 

of the anatomical structures and their 

relationships and so the model learns a good 

amount of medical data understanding without the 

need to learn from labelled images.  

The masked auto-encoder loss is given by Equation [3]. 

𝐿𝑀𝐴𝐸 =
1

𝑁
 ∑   

𝑖 𝑚𝑎𝑠𝑘𝑒𝑑 ‖𝑥𝑖̂ − 𝑥𝑖‖2   [3]
 

 
Figure 6: Masked Volume Modelling (MVM) 

 

For example, the contractive loss (SimCLR style) is given by Equation [4]. 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = − 𝑙𝑜𝑔 𝑙𝑜𝑔 
𝑒

𝑠𝑖𝑛 (
𝑧𝑖,𝑧𝑗

𝜏 )

∑  2𝑁
𝑘=1 1[𝑘≠𝑖]𝑒

𝑠𝑖𝑛 (
𝑧𝑖,𝑧𝑘

𝜏 )
    [4] 

 

The mean squared error (MSE) loss is used to train 

the model since for the task of reconstructing 

missing patches in the continuous-valued input 

such as 3D medical scans it is more appropriate. 
 

 
Figure 7: Multi-Head Self-Attention for 3D Token Interaction 
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In the self-supervised learning phase, a large pool 

of raw medical scans derived from publicly 

available datasets has been used, which does not 

contain MRI or CT images. This pre-training phase 

also helps in extracting features that can be useful 

in the rest of the other medical images. 

Supervised Fine-Tuning 
Fine-tuning starts after pre-training, where a small 

set of labelled data only rare pathologies is used. 

Transfer learning allows the model to take and 

apply the learned features to a specific 

downstream task, for example, detection and 

segmentation of tumours or any other 

abnormalities. Figure 7 shows multi-head self-

attention for 3D token interaction, and Figure 8 

explains the fine-tuning transformer for rare 

pathology detection. 
 

 

 

For binary classification (e,g pathology present Vs not present): 
 

𝐿𝐶𝐸 = −𝑦𝑙𝑜𝑔(𝑦̂) − (1 − 𝑦)𝑙𝑜𝑔 (1 − 𝑦̂)  [5] 
 

Or segmentation (pixel-wise cross entropy or dice loss) 
 

𝐿𝐷𝑖𝑐𝑒 = 1 −
2|𝑃∩𝐺|

|𝑃|+|𝐺|
    [6] 

 

The fine-tuning task is a binary or multi-class 

classification problem for pathologies (such as 

tumour or non-tumour) or segmentation tasks 

where the model itself outlines the boundaries of 

the pathological defect and is derived using 

Equation [5] and Equation [6]. For classification, 

cross entropy is used while for segmentation, Dice 

loss is used to address class imbalance as seen 

when detecting rare diseases. 

 

 
Figure 8: Fine Tuning Transformer for Rare Pathology Detection 

 

Medical model evaluation includes multiple 

assessment criteria to fully understand its 

effectiveness in detecting rare pathologies. Dice 

Coefficient: The Dice Coefficient measures how 

well the segmentation delineates tumour 

boundaries with precision and clarity. AUC-ROC 

(Area under the Curve - Receiver Operating 

Characteristic): The model's binary classification 

accuracy is evaluated to differentiate between 

pathologically altered tissue and healthy tissue. 

The PR curves in Figure 9 demonstrate that the 

proposed SSL-Transformer consistently maintains 

higher precision across recall levels compared to 

supervised baselines, particularly under class-

imbalanced rare pathology scenarios.  

The precision-recall and receiver operating 

characteristic curves are displayed in Figures 9 

and 10. The training loss and accuracy are shown 

in Figures 11 and 12. 

Sensitivity and specificity, the model's 

performance metrics, offer insights into positive 

samples; specificity reviews negative samples. In 

binary classification, the F1 Score is a metric that 

balances precision and recall. The research reveals 

how model pre-training results compare with non-

pre-training outcomes to show the importance of 

self-supervision when working with downstream 

tasks that have few labelled examples. 
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Figure 9: Precision–Recall (PR) Curves for Rare Pathology Detection (A) Brain Tumor Detection on BraTS 

2021 Dataset, (B) Lung Nodule Detection on LIDC-IDRI dataset, (C) Average PR Performance across five-

Fold Cross-Validation, (D) Ablation Comparison Illustrating the Impact of Self-Supervised Pre-Training 
 

 
Figure 10: ROC Curve Visualization (A) Normal (B) Common Pathology (C) Rare pathology (D) Overall 
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Figure 11: Training and Validation Loss vs. Epoch 

 

 
Figure 12: Training and Validation Accuracy vs. Epoch 

 

Attention Maps: A major strength of transformer 

models is that they naturally produce attention 

maps. These maps represent the areas of the scan 

that the model uses in arriving at the final decision. 

During the classification and segmentation, 

attention maps are produced, which help clinicians 

to better understand the model’s output. These 

attention maps can be especially helpful in a 

clinical environment since they show which areas 

are of interest and are most indicative of rare 

pathologies, thus adding to the confidence in the AI 

model decision-making. The confusion matrix heat 

map is shown in Figure 13. The 3D visualisation of 

tumour detection and lung nodule detection are 

shown in Figures 14-17. 

 

 
Figure 13: Confusion Matrix Heat Maps 

 

Results 
Hardware: The experiments occurred on a system 

that used NVIDIA Tesla V100 GPUs, which included 

32GB of RAM capacity. PyTorch facilitated the 

training, while mixed precision techniques 

enhanced optimization. The transformer model 

completed its training cycle through 100 epochs 

using a masked patch prediction method on raw, 

unlabelled 3D medical image data. The labelled 

dataset underwent fine-tuning for 50 extra epochs 
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with the settings of a learning rate at 0.0001 and a 

batch size of 8 (Figures 14 and 15).  

A training session was followed by implementing 

an early halting strategy to address the problem of 

over fitting. 
 

 
Figure 14: Attention Maps Overlaid on 3D Volumes 

 

 
Figure 15: SHAP or Grad-CAM 

 

Data Partitioning: The labelled dataset was 

distributed into training, validation, and test sets at 

proportions of 7:1.5:1.5 to support fine-tuning. 

Using five-fold cross-validation served as a 

performance evaluation method to reduce over 

fitting. The proposed technique underwent 

evaluation using three-dimensional CNN models, 

including U-Net, which performs segmentation, 

and ResNet-3D, which handles classification, and 

both were trained using full supervision (Figures 

16 and 17). 

 

 
Figure 16: 3D Segmentation or Classification 
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Figure 17: Case Studies: Correct vs. Incorrect Predictions with Context 

 

The test results have been assessed for detection of 

brain tumours using the BraTS 2021 Dataset. 

Research assessed the effectiveness of the new 

transformer-based self-supervised learning model 

through evaluations of brain tumour detection and 

segmentation tasks using the BraTS 2021 dataset. 

The performance analysis is listed in Table 1. All 

reported Dice and AUC-ROC values are expressed 

as mean ± standard deviation, computed using 

five-fold cross-validation. 
 

Table 1: Performance of Tumour detection BraTS 2021 Dataset 
Model Dice Coefficient AUC-ROC Sensitivity Specificity F1 Score 

Proposed Model 0.89 ± 0.02 0.95 ± 0.01 0.87 0.93 0.88 

U-Net (Supervised) 0.82 ± 0.03 0.90 ± 0.02 0.81 0.89 0.83 

ResNet-3D 0.80 ± 0.03 0.88 ± 0.02 0.79 0.87 0.81 
 

 
Figure 18: Dice Coefficient Comparison on BraTS 2021 Validation Set 

 

The proposed method reached a Dice coefficient 

value of 0.89 for the validation set which exceeded 

the results achieved by the fully supervised U-Net 

and ResNet-3D models and is shown in Figure 18. 

The supervised baseline models (U-Net and 

ResNet-3D) were trained from scratch for a fair 

comparison, following the same training, 

validation and test splits as our network. No 

ImageNet, MedicalNet or external pre-trained 

models were used for the baseline models. Such 

design option lets performance gaps between 

different methods not come from prior learn 

representations, but rather the new proposed 

self-supervised pre-training strategy. The 

transformer model displayed superior 

differentiation capabilities between tumour and 

non-tumour areas with an AUC-ROC of 0.95 

showing strong performance in rare disease cases 

that presented subtle differences. The diagnostic 

model shows high efficacy in cancer detection with 

a sensitivity rate of 0.87 and specificity rate of 0.93 

which prevents false positive results. 

The proposed model has been tested using the 

LIDC-IDRI dataset to detect lung nodules and 

classify them as benign or malignant. Table 2 

shows the performance analysis of long nodule 

detection.  
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Table 2: Performance of Lung Nodule Detection – LIDC-IDRI Dataset 
Model Dice Coefficient AUC-ROC Sensitivity Specificity F1 Score 

Proposed Model 0.86 ± 0.02 0.92 ± 0.01 0.84 0.91 0.85 

U-Net (Supervised) 0.79 ± 0.03 0.88 ± 0.02 0.77 0.89 0.80 

ResNet-3D 0.76 ± 0.03 0.86 ± 0.02 0.75 0.86 0.78 
 

Our proposed model produced better results in 

lung nodule detection than baseline methods, with 

a Dice coefficient of 0.86 and an AUC-ROC of 0.92. 

The results show the system's effectiveness in 3D 

medical image analysis for identifying both benign 

and malignant lesions. An ablation study has been 

performed to evaluate the effect of the model's 

self-supervised pre-training stage, and the model 

has been trained with and without pre-training 

before comparing the results. The analysis is 

shown in Table 3. 

 

Table 3: Ablation Analysis 
Model Dice Coefficient AUC-ROC Sensitivity Specificity 

Proposed Model (with SSL) 0.89 ± 0.02 0.95 ± 0.01 0.87 0.93 

Proposed Model (without SSL) 0.82 ± 0.03 0.90 ± 0.02 0.80 0.88 
 

Effects of SSL Pre-training: All evaluated 

performance parameters showed enhancement 

after self-supervised pre-training, which showed 

the essential role of SSL in developing complete 

representations from unlabelled data for detecting 

rare pathologies. The focus of this research lies on 

creating visual representations of tumour 

segmentation, which are depicted in Figures 19-21. 
 

 
Figure 19: Visual Representations of Tumour Segmentation – Sample 

 

The transformer-based model's performance has 

been evaluated by visually analysing the 

segmentation masks created for brain tumours 

within the BraTS 2021 dataset. Figure 19 provides 

examples of ground truth data, predicted 

segmentation results and attention maps from the 

transformer across various tumour conditions. 

The attention maps show the areas of the MRI scan 

where the model focused when deciding. Figures 

13 and 18 are in close accordance with the true 

tumour regions, and hence, the transformer-based 

model is interpretable. 

The classification of lung nodules from the LIDC-

IDRI dataset is shown in Figure 20. The attention 

mechanism in the transformer model detects 

malignant nodules by highlighting areas of 

interest. In detecting the malignant nodule, the 

model's attention map highlights the surrounding 

area, which shows its feature attention for 

pathologies (Figure 21). 
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Figure 20: Lung Nodule Detection – Sample 

 

 
Figure 21: 3D Segmentation or Classification Visualization with Side-by-Side Comparison 

 

Table 4: Comparison with State-of-the-Art Methods 
Model Task Dataset Dice Coefficient AUC-ROC F1 Score 

Proposed Model Tumor Segmentation BraTS 2021 0.89 0.95 0.88 

MedT [1] Tumor Segmentation BraTS 2021 0.83 0.91 0.84 

U-Net Tumor Segmentation BraTS 2021 0.82 0.90 0.83 

ResNet-3D Lung Nodule Detection LIDC-IDRI 0.76 0.86 0.78 
 

Table 4 presents the performance evaluation of the 

suggested model. The method proposed always 

showed superiority over both CNN and other 

transformer methods, which shows the 

effectiveness of self-supervised pre-training 

together with multi-head attention for similarities 

and differences in any complex medically relevant 

data set. The suggested model excelled in 

identifying and segmenting rare pathologies and 

outperformed the baseline models of multiple 

datasets. It was confirmed during the ablation 

studies that the self-supervised learning phase was 

the most important when the model was 

developed with limited labelled data. The attention 

maps produced by the transformer model, which 

facilitated the clinician’s acceptance of the model 

and its incorporation into clinical practice, 

improved the interpretability of the model 

applications. 
 

Discussion 
The experimental results show that the fusion of 

self-supervised learning and transformer-based 

models can greatly benefit rare pathology 

detection in high resolution 3D medical images. 

Comparing across both BraTS 2021 and LIDC-

IDRI datasets, our SSL-Transformer consistently 

achieved better or comparable performance in 

Dice coefficient, AUC-ROC, sensitivity, F1 score to 

their full supervised convolutional based baselines 

(4, 5, 17). These advances are especially important 

for rare disease cases, where the class imbalance 

and lack of labelled samples hinder classical deep 

learning methods. 

The better performance of the proposed approach 

could be explained that it can learn more general 

volumetric representations in the self-supervised 

pretraining. Masked volume modelling allows the 

transformer encoder to exploit long-range spatial 
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dependencies and contextual anatomical 

relationships that are challenging for convolu-

tional architectures to model efficiently. As seen in 

the ablation study, removing the iterative 

structure of self-supervised pre-training, overall 

performance, which shows that fine-tuned 

representations are essential for downstream 

rare pathology detection tasks (17). 

Another key aspect of this work is model 

interpretability. Transformer attention maps offer 

interpretability as visual explanations in which 

attention is used to visualize areas that are most 

informative for model predictions. These 

attention-guided visualizations can be easily 

interpreted from a clinical perspective, which 

enhances the interpretability and confidence of 

medical workers. Such interpretability is 

necessary for clinical implementation, especially in 

a high-stakes diagnosis. 

Cross-institutional application from a cross-

institutional viewpoint, the employment of 

heterogeneous public datasets with multi-

scanners and imaging protocols would promote 

the robustness of learned representations (4, 5). 

Despite the lack of explicit multi-hospital 

validation in this work, the good generalization 

capacity across various datasets shows our 

framework is potentially adaptive to different 

clinical environments. The next step will be to 

investigate the federated and multi-institutional 

training methods for more rigorous verification 

and enhancement of the cross-hospital 

generalization performance. 

However, the present study has some limitations. 

The assessment was limited to two benchmark 

datasets and our own small private clinical dataset, 

and requires larger multi-centre studies to 

consider real-world deployment (4, 5). The 

computational overhead of transformer 

architectures could limit the ability to integrate 

them in real time into clinical settings, warranting 

future optimization. 

Cross-hospital adaptability leads to a clinically 

applicable automated diagnostic system. In our 

work, we trained and tested our proposed model 

on diverse datasets from various institutions, 

scanners and acquisition protocols, such as BraTS 

2021 and LIDC-IDRI (4, 5). This variation 

contributes to increased robustness and decreased 

sensitivity to institution-specific imaging 

protocols. Although we did not explicitly multi-

centre clinically validate, the across-dataset 

reproducibility results support that the learned 

representations are not strictly specific to one 

hospital setting. Our future work includes 

federated and multi-institutional training method 

to provide add-on value of cross-hospital 

generalization without centralized data sharing. 

On the whole, these results show transformer-

based self-supervised learning is a potential 

avenue for scalable, data-efficient and 

interpretable medical image analysis systems, 

notably in rare pathology detection in 3D imaging 

(17). 

Conclusion 
This work proposes a transformer-based self-

supervised learning paradigm for the automatic 

detection of rare pathologies on 3D medical 

images. Through the use of masked volume 

modelling on a large-scale unlabelled dataset, our 

approach learns strong 3D representations that 

outperform under sparse annotation. 

Experimental results on BraTS 2021 and LIDC-

IDRI datasets showed our model outperforms 

fully supervised U-Net and ResNet-3D baselines 

across Dice coefficient, AUC-ROC, sensitivity and 

F1 score. The attention-facilitated architecture 

promotes model interpretability by visualizing 

attention activations (important regions for 

deciding) on the input image with clinical 

correlation, which can help to localize clinically 

meaningful pathological findings and provide 

transparent decision-making. In summary, our 

findings suggest that when combined with 

transformer architectures, self-supervised 

learning can be used as a scalable and data-

efficient approach towards detecting rare 

pathologies in complex 3D imaging domains. We 

plan to focus future work on multi-institutional 

validation, directly integrating federated learning 

and real-time clinical deployment. 
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