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Abstract

Computational diagnosis of rare pathologies in high-resolution 3D medical images is a challenging task, as it suffers
from scarce labelled data in the presence of subtle disease presentation and demand for effectual volumetric
representations. Towards this goal, this work introduces a transformer-based self-supervised learning framework that
uses abundant unlabelled MRI and CT scans to learn universal anatomical representations without requiring manual
label annotation. The model features masked volume modelling, in which randomly occluded 3D patches are modelled
to deal with long-range spatial dependencies. Following pre-training, the model is fine-tuned with a few labelled
samples from rare brain and lung pathologies. Experimental results on the BraTS 2021 and LIDC-IDRI datasets show
that its performance surpasses supervised U-Net and ResNet-3D baselines with higher Dice and AUC-ROC scores.
Attention maps offer interpretability by highlighting the clinically relevant areas that affect model predictions. The
findings suggest self-supervised transformer architectures as a scalable and data-efficient approach to rare pathology
detection in 3D medical imaging.

Keywords: Deep Learning, Masked Volume Modelling, Medical Al, Rare Disease Detection, Transformer Models,
Volumetric Image Analysis.

Introduction
Imaging modalities like MRI, computed of volumetric imaging data is labour intensive,
tomography (CT) and positron emission time-consuming and subject to interobserver

tomography (PET) are important in clinical variability, illustrating the constraints of fully

management as they provide a means to visualize
both anatomical and functional abnormalities in

three-dimensional format (1-3). While the
technology in this area has become more
sophisticated, especially detecting rare

pathologies in high resolution 3D images is still a
difficult task. These diseases typically present with
subtle radiological findings and are rare in clinical
datasets; therefore, the labelled samples available
for training classical deep learning models are
vastly restricted (4, 5). Supervised designs
including U-Net and 3D residual networks have
shown successful performance on common
segmentation or classification tasks, yet their
effectiveness is limited for rare diseases because
of very large labelled data (6, 7). Manual labelling

supervised methods (8). Self-supervised learning
(SSL) offers a potential alternative, as it allows
models to learn invariant features from the
unlabelled data itself, typically
through pretext tasks such as contrastive learning,
prediction, or predicting
geometric transformations (9-12). SSL methods
have shown better generalization with label

volumetric

masked volume

scarcity and class imbalance, thus are suitable for
study  (13).
developments have also revolutionized the field of
computer vision using transformer-based
architectures. Developed for natural language
processing, transformers use global self-attention

rare disease Simultaneous

to model long-range dependencies that are
challenging for convolutional networks (14, 15).
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When applied to 3D medical imaging, transformers
may also be capable of capturing more intricate

spatial relationships over well-defined volumetric
patches and have potential for better recognition
of diffuse, irregular, or spatially complex lesions
(16-18). These characteristics provide a solid base
for implementing models that can detect rare
pathological findings more robustly. Combining
SSL with transformer encoders has proved very
promising recently, and achieved great
improvements tasks like segmentation,
classification, and anomaly detection in medical
imaging (19-22). On one hand, SSL-based
pretraining enriches the feature representation
while transformers do multi-scale contextual
modelling, and both can overcome these two
limitations: the limitation of data sufficiency and
3D complex spatial structure. However, this
combined strategy is still rarely used in rare
pathology detection. To the best of our knowledge,
this study is the first to present a transformer-
based self-supervised learning model specifically
designed for rare pathology detection in high-
resolution 3D MRI and CT images. The model uses
masked volume modelling to recover anatomical
representations from unlabelled data and is
subsequently fine-tuned on smaller sets of labels
for two rare brain and lung abnormalities. The
proposed method, with benchmark datasets
including BraTS 2021 for glioma assessment (23)
and LIDC-IDRI for lung nodule analysis (24),
improves results than conventional convolutional

in

models. This finding underscores the promise of
SSL-boosted transformers to provide reliable,
interpretable, and scalable diagnostic support in
clinical routines where there is alack of annotated
data for rare diseases (25).
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Methodology

Dataset and Pre-processing

Our proposed framework is tested on different
public and clinical datasets of high-resolution 3D
medical images. For the rare pathology, datasets
like BraTS 2021 (Brain Tumour), LIDC-IDRI (lung
nodule) along with a private dataset of rare
pathologies including brain and lung cancer have
been used. The BraTS 2021 dataset comprises
annotated 3D MRI brain images for glioma
segmentation and diagnosis tasks. BraTS 2021 is a
compilation of MRI images from adult glioma
patients, comprising four structural MRI
modalities. The dataset includes T1, T1lc, T2, T2-
FLAIR MRI modalities and their respective ground
truth annotations of tumorous regions. The
collection comprises 1251 scans accompanied by
truth annotations of tumorous areas, featuring
four modalities for each case: The collection
includes T1 sequences, T1 post-contrast sequences
(T1Gd), T2 sequences, and T2-FLAIR sequences for
analysis. The BraTS 2021 dataset builds on the
BraTS 2020 dataset by including 660 cases and
2640 mpMRI scans. Researchers use this dataset to
test algorithms that identify similar tumour
compartmentalization patterns. 9. The BraTS 2021
dataset shown in Figure 1 contains brain tumours
that are gliomas originating from the brain's glial
cells. Gliomas fall into two distinct categories,
which are primary malignant and benign. The data
set does not provide information about which
specific subtypes of gliomas were included in the
analysis. Overall, the BraTS 2021 dataset is a
collection of structural MRI scans from adult brain
glioma patients with four structural modalities and
their ground truth segmentation masks of
tumorous areas. The dataset comprises 1251 scans
and is employed for the assessment of
computational algorithms analysing tumour
compartmentalization. The brain tumours in the
dataset are gliomas; they can be malignant or
benign.
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Figure 1: Sample images from BraTS 2021

LIDC-IDRI: The LIDC-IDRI database contains 3D CT
scans from patients who have lung nodules, which
radiologists evaluate to determine if they are
benign or malignant. Diagnostic thoracic CT scans
for lung cancer screening are in the LIDC-IDRI
image collection. The current dataset contains
1010 patients, which includes both 399 pilot CT
cases and 611 more patient cases. The LIDC-IDRI
collection shown in Figure 2 holds multiple lung CT
scan images with their labels documented in a CSV
file. Each 3D model of lung nodules in the dataset

comes with four annotations. The public

LIDC/IDRI dataset provides size measurements for
each lung nodule in the collection. No other public
collection exceeds LIDC-IDRI in terms of lung
cancer image data for developing and validating
computer-aided detection systems and supporting
lung cancer research. The findings of this study
support academic research and have practical uses
in various areas, such as detecting and classifying
lung nodules. The complete LIDC-IDRI dataset is
accessible to users via the website's Data Access
section.

Figure 2: Sample LIDC-IDRI dataset

A relatively small clinical dataset is collected for
low-incidence diseases that are characterized by
subtle patterns and have labels that are generated
by experienced specialists. Some of the pre-
processing techniques are then used to normalize
the input data. Rescaling and Normalization: All
images are then resized and re-sampled to have
isotropic voxel dimensions, and pixel values are
also scaled to the range [0, 1]. Cropping/Padding:
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In order to have uniform input sizes, the scans are
resized and cropped or padded around areas of
interest. In the second phase of the supervised
fine-tuning, data augmentation methods like
rotation, scaling, flipping, and elastic deformation
are used because of the limited number of labelled
samples. The sample pre-processed image is
shown in Figure 3.
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Figure 3: Pre-Processed Images

Architecture of Transformer for 3D

Medical Imaging
The Vision Transformer (ViT) for 3D medical
imaging is used by changing its input to work with

volumetric instead of image data. 3D medical scans
are divided into 3D patches, and each patch is
modelled as a sequence token, similar to ViT. The
overall proposed system is shown in Figure 4.

SSL
Pretraining

Input 3D
Medical Image
(e.g, CT, MRI)

Transformer
Encoder

Transmissior-

Encoder
{e.g. Swin Trans ViT)

Figure 4: End-to-End SSL Pipeline for 3D Pathology Detection

The 3D medical scan is then divided into cubic
patches of the desired size (for example, 16x16x16
vowels per patch), and each patch is then mapped
to a 1D vector. This is illustrated in Figure 5. To
facilitate this, the patch embedding is further
linearly projected into a lower dimensional feature
space that can be processed by the self-attention of

the transformer. Because transformers do not have
a built-in mechanism for capturing positional
information, positional Encoding are incorporated
into the patch embedding so that the model still
maintains the spatial relations of patches within
the 3D scan.

Input 3D Volume

| 3D Patch
Tokenization

il

|

L)

3D Patch Tokens

3pPatch | | [[]]] Poistion |]]]

Figure 5: 3D Patch Tokenization and Positional Encoding
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For a single head, the self-attention equation is given in Equation [1].

Attention (Q,K,V) = sof tmax(%:)V [1]

Where Q, K, V are query, key and value matrices. dj,
is the dimensionality of the key vectors. The
transformer uses its self-attention heads to attend
to the input patches, so the model can attend to
both local features of the patches and the overall

Self-supervised Pre-training

context of the scan. This is especially helpful in
identifying various uncommon pathologies which
might herald a variety of signs in different sections
of the scan.

The masked patch prediction task is explained in Equation [2].

For each 3D patch, x; € RP*P*P

z; = Wg. flatten(x;) + Ep,s (i) [2]
where W is the learnable embedding weights and Ey,,,(i) is the positional encoding.

Even during the pre-training phase, the proposed
method makes use of a masked patch prediction
task derived from Masked Image Modelling (MIM)
which is shown in Figure 6. Some of the 3D patches
within the input scan are randomly selected and
then occluded and the model is trained to learn the
occluded patches from the context of the

The masked auto-encoder loss is given by Equation [3].

surrounding patches. This task also helps in the
learning of more semantically rich representations
of the anatomical structures and their
relationships and so the model learns a good
amount of medical data understanding without the
need to learn from labelled images.

1 ~
Lyag =< Zimasked 1%, — xillz [3]
N

3D Patched Volume

Transformer J» \

Reconstructed
3D Volume

Figure 6: Masked Volume Modelling (MVM)

For example, the contractive loss (SImCLR style) is given by Equation [4].

sin (

Zi,Zj
)

log log

Leontrast = —

2N S
Yk=1 lk=ile

The mean squared error (MSE) loss is used to train
the model since for the task of reconstructing

[4]

. Z,Z
in ( LT k)

missing patches in the continuous-valued input
such as 3D medical scans it is more appropriate.
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Figure 7: Multi-Head Self-Attention for 3D Token Interaction
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In the self-supervised learning phase, a large pool
of raw medical scans derived from publicly
available datasets has been used, which does not
contain MRI or CT images. This pre-training phase
also helps in extracting features that can be useful
in the rest of the other medical images.
Supervised Fine-Tuning

Fine-tuning starts after pre-training, where a small
set of labelled data only rare pathologies is used.

Vol 7 | Issue 1

Transfer learning allows the model to take and
apply the learned features to a specific
downstream task, for example, detection and
segmentation of or any other
abnormalities. Figure 7 shows multi-head self-
attention for 3D token interaction, and Figure 8
explains the fine-tuning transformer for rare
pathology detection.

tumours

For binary classification (e,g pathology present Vs not present):

Leg = —ylog(@) — (1 —y)log (1 —9)

Or segmentation (pixel-wise cross entropy or dice
2|PNG]|
Loiw=1—
Dice |Pl+]G]

The fine-tuning task is a binary or multi-class
classification problem for pathologies (such as
tumour or non-tumour) or segmentation tasks
where the model itself outlines the boundaries of
the pathological defect and is derived using

loss)

[5]

[6]

Equation [5] and Equation [6]. For classification,
cross entropy is used while for segmentation, Dice
loss is used to address class imbalance as seen
when detecting rare diseases.

High-Resolution
3D Medical Image

Transformer

|

Normal

v

Common
__Pathology

Y

h 4

Rare Pathology

Figure 8: Fine Tuning Transformer for Rare Pathology Detection

Medical model evaluation includes multiple

assessment criteria to fully understand its
effectiveness in detecting rare pathologies. Dice
Coefficient: The Dice Coefficient measures how
the segmentation
boundaries with precision and clarity. AUC-ROC
(Area under the Curve - Receiver Operating

Characteristic): The model's binary classification

well delineates tumour

accuracy is evaluated to differentiate between
pathologically altered tissue and healthy tissue.
The PR curves in Figure 9 demonstrate that the
proposed SSL-Transformer consistently maintains
higher precision across recall levels compared to
supervised baselines, particularly under class-
imbalanced rare pathology scenarios.
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The precision-recall and receiver operating
characteristic curves are displayed in Figures 9
and 10. The training loss and accuracy are shown
in Figures 11 and 12.

Sensitivity specificity, the
performance metrics, offer insights into positive
samples; specificity reviews negative samples. In

binary classification, the F1 Score is a metric that

and model's

balances precision and recall. The research reveals
how model pre-training results compare with non-
pre-training outcomes to show the importance of
self-supervision when working with downstream
tasks that have few labelled examples.
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Figure 9: Precision-Recall (PR) Curves for Rare Pathology Detection (A) Brain Tumor Detection on BraT$S
2021 Dataset, (B) Lung Nodule Detection on LIDC-IDRI dataset, (C) Average PR Performance across five-
Fold Cross-Validation, (D) Ablation Comparison Illustrating the Impact of Self-Supervised Pre-Training
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Attention Maps: A major strength of transformer
models is that they naturally produce attention
maps. These maps represent the areas of the scan
that the model uses in arriving at the final decision.
During the classification and segmentation,
attention maps are produced, which help clinicians
to better understand the model’s output. These
attention maps can be especially helpful in a

clinical environment since they show which areas
are of interest and are most indicative of rare
pathologies, thus adding to the confidence in the Al
model decision-making. The confusion matrix heat
map is shown in Figure 13. The 3D visualisation of
tumour detection and lung nodule detection are
shown in Figures 14-17.
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3
£
Pathciogy| ogy 12
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Figure 13: Confusion Matrix Heat Maps

Results

Hardware: The experiments occurred on a system
thatused NVIDIA Tesla V100 GPUs, which included
32GB of RAM capacity. PyTorch facilitated the

training, while mixed precision techniques
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enhanced optimization. The transformer model
completed its training cycle through 100 epochs
using a masked patch prediction method on raw,
unlabelled 3D medical image data. The labelled
dataset underwent fine-tuning for 50 extra epochs
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with the settings of a learning rate at 0.0001 and a

batch size of 8 (Figures 14 and 15).

Vol 7 | Issue 1

A training session was followed by implementing
an early halting strategy to address the problem of
over fitting.

Common
Pathology

Rare Rare
Pathology

Pathology

Figure 15: SHAP or Grad-CAM

Data Partitioning: The labelled dataset was
distributed into training, validation, and test sets at
proportions of 7:1.5:1.5 to support fine-tuning.
Using five-fold cross-validation served as a
performance evaluation method to reduce over
fitting. The proposed technique underwent

evaluation using three-dimensional CNN models,
including U-Net, which performs segmentation,
and ResNet-3D, which handles classification, and
both were trained using full supervision (Figures
16 and 17).

Figure 16: 3D Segmentation or Classification
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Figure 17: Case Studies: Correct vs. Incorrect Predictions with Context

The test results have been assessed for detection of
brain tumours using the BraTS 2021 Dataset.
Research assessed the effectiveness of the new
transformer-based self-supervised learning model
through evaluations of brain tumour detection and

segmentation tasks using the BraTS 2021 dataset.
The performance analysis is listed in Table 1. All
reported Dice and AUC-ROC values are expressed
as mean * standard deviation, computed using
five-fold cross-validation.

Table 1: Performance of Tumour detection BraTS 2021 Dataset
Model Dice Coefficient AUC-ROC Sensitivity Specificity F1 Score
Proposed Model 0.89 £ 0.02 0.95+0.01 0.87 0.93 0.88
U-Net (Supervised) 0.82 +0.03 0.90 +£0.02 0.81 0.89 0.83
ResNet-3D 0.80 £ 0.03 0.88 £ 0.02 0.79 0.87 0.81
1.0
2 0.9 0.89
L
O 0.86
=
[
S
g
5os8
0:7- T
U-Net (Supervised) ResNet-3D (Supervised) Transformer (SSL)
Model Architecture
Figure 18: Dice Coefficient Comparison on BraTS 2021 Validation Set
The proposed method reached a Dice coefficient transformer model displayed superior

value of 0.89 for the validation set which exceeded
the results achieved by the fully supervised U-Net
and ResNet-3D models and is shown in Figure 18.
The supervised baseline models (U-Net and
ResNet-3D) were trained from scratch for a fair
the same training,
validation and test splits as our network. No
ImageNet, MedicalNet or external pre-trained
models were used for the baseline models. Such
design option lets performance gaps between
different methods not come from prior learn

comparison, following

representations, but rather the new proposed
self-supervised  pre-training  strategy. The
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differentiation capabilities between tumour and
non-tumour areas with an AUC-ROC of 0.95
showing strong performance in rare disease cases
that presented subtle differences. The diagnostic
model shows high efficacy in cancer detection with
a sensitivity rate of 0.87 and specificity rate of 0.93
which prevents false positive results.

The proposed model has been tested using the
LIDC-IDRI dataset to detect lung nodules and
classify them as benign or malignant. Table 2
shows the performance analysis of long nodule
detection.
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Table 2: Performance of Lung Nodule Detection - LIDC-IDRI Dataset

Model Dice Coefficient AUC-ROC Sensitivity Specificity F1 Score
Proposed Model 0.86 +0.02 0.92 +0.01 0.84 0.91 0.85
U-Net (Supervised) 0.79£0.03 0.88 £ 0.02 0.77 0.89 0.80
ResNet-3D 0.76 £ 0.03 0.86 +0.02 0.75 0.86 0.78
Our proposed model produced better results in performed to evaluate the effect of the model's
lung nodule detection than baseline methods, with self-supervised pre-training stage, and the model
a Dice coefficient of 0.86 and an AUC-ROC of 0.92. has been trained with and without pre-training
The results show the system's effectiveness in 3D before comparing the results. The analysis is
medical image analysis for identifying both benign shown in Table 3.

and malignant lesions. An ablation study has been

Table 3: Ablation Analysis

Model Dice Coefficient AUC-ROC Sensitivity Specificity
Proposed Model (with SSL) 0.89 +£0.02 0.95+0.01 0.87 0.93
Proposed Model (without SSL) 0.82 +0.03 0.90 +£0.02 0.80 0.88
Effects of SSL Pre-training: All evaluated representations from unlabelled data for detecting
performance parameters showed enhancement rare pathologies. The focus of this research lies on
after self-supervised pre-training, which showed creating visual representations of tumour
the essential role of SSL in developing complete segmentation, which are depicted in Figures 19-21.

Ground Truth Predicted

Attention M

Meningioma

Metastasis

Figure 19: Visual Representations of Tumour Segmentation - Sample

The transformer-based model's performance has tumour regions, and hence, the transformer-based
been evaluated by visually analysing the model is interpretable.

segmentation masks created for brain tumours The classification of lung nodules from the LIDC-
within the BraTS 2021 dataset. Figure 19 provides IDRI dataset is shown in Figure 20. The attention
examples of ground truth data, predicted mechanism in the transformer model detects
segmentation results and attention maps from the malignant nodules by highlighting areas of
transformer across various tumour conditions. interest. In detecting the malignant nodule, the
The attention maps show the areas of the MRI scan model's attention map highlights the surrounding
where the model focused when deciding. Figures area, which shows its feature attention for
13 and 18 are in close accordance with the true pathologies (Figure 21).
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Figure 20: Lung Nodule Detection - Sample
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Figure 21: 3D Segmentation or Classification Visualization with Side-by-Side Comparison

Table 4: Comparison with State-of-the-Art Methods

Model Task Dataset Dice Coefficient AUC-ROC F1 Score
Proposed Model Tumor Segmentation BraTsS 2021 0.89 0.95 0.88
MedT [1] Tumor Segmentation BraTS 2021 0.83 091 0.84
U-Net Tumor Segmentation BraTS 2021 0.82 0.90 0.83
ResNet-3D Lung Nodule Detection LIDC-IDRI 0.76 0.86 0.78
Table 4 presents the performance evaluation of the Discussion

suggested model. The method proposed always
showed superiority over both CNN and other
methods, which the
of self-supervised pre-training
together with multi-head attention for similarities
and differences in any complex medically relevant
data set.

transformer shows

effectiveness

The suggested model excelled in
identifying and segmenting rare pathologies and
outperformed the baseline models of multiple
datasets. It was confirmed during the ablation
studies that the self-supervised learning phase was
the most important when the model was
developed with limited labelled data. The attention
maps produced by the transformer model, which
facilitated the clinician’s acceptance of the model
and its incorporation into clinical practice,
improved the interpretability of the model

applications.
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The experimental results show that the fusion of
self-supervised learning and transformer-based
models can greatly benefit rare pathology
detection in high resolution 3D medical images.
Comparing across both BraTS 2021 and LIDC-
IDRI datasets, our SSL-Transformer consistently
achieved better or comparable performance in
Dice coefficient, AUC-ROC, sensitivity, F1 score to
their full supervised convolutional based baselines
(4,5, 17). These advances are especially important
for rare disease cases, where the class imbalance
and lack oflabelled samples hinder classical deep
learning methods.

The better performance of the proposed approach
could be explained that it can learn more general
volumetric representations in the self-supervised
pretraining. Masked volume modelling allows the
transformer encoder to exploit long-range spatial
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dependencies and  contextual anatomical
relationships that are challenging for convolu-
tional architectures to model efficiently. As seen in
the ablation study, removing the iterative
structure of self-supervised pre-training, overall
performance, which that fine-tuned
representations are essential for downstream
rare pathology detection tasks (17).

Another key aspect of this work is model
interpretability. Transformer attention maps offer
interpretability as visual explanations in which
attention is used to visualize areas that are most
predictions. These
attention-guided visualizations can be easily
interpreted from a clinical perspective, which
enhances the interpretability and confidence of
Such interpretability
necessary for clinical implementation, especially in
a high-stakes diagnosis.

Cross-institutional application from a cross-
institutional viewpoint, the employment of
heterogeneous public datasets with multi-
scanners and imaging protocols would promote
the robustness of learned representations (4, 5).
Despite the lack of explicit multi-hospital
validation in this work, the good generalization
capacity across various datasets shows our

shows

informative for model

medical workers. is

framework is potentially adaptive to different
clinical environments. The next step will be to
investigate the federated and multi-institutional
training methods for more rigorous verification
of the
generalization performance.

However, the present study has some limitations.
The assessment was limited to two benchmark
datasets and our own small private clinical dataset,
and

and enhancement cross-hospital

requires larger multi-centre studies to
consider real-world deployment (4, 5). The
computational of
architectures could limit the ability to integrate
them in real time into clinical settings, warranting
future optimization.

Cross-hospital adaptability leads to a clinically

overhead transformer

applicable automated diagnostic system. In our
work, we trained and tested our proposed model
on diverse datasets from various institutions,
scanners and acquisition protocols, such as BraTS
2021 and LIDC-IDRI (4, 5). This variation
contributes to increased robustness and decreased
sensitivity
protocols. Although we did not explicitly multi-

to  institution-specific =~ imaging
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centre clinically validate, the across-dataset
reproducibility results support that the learned
representations are not strictly specific to one
hospital setting. Our future work includes
federated and multi-institutional training method
to provide add-on value of cross-hospital
generalization without centralized data sharing.
On the whole, these results show transformer-
based self-supervised learning is a potential
for scalable, data-efficient  and
interpretable medical image analysis systems,
notably in rare pathology detection in 3D imaging
(17).

Conclusion

This work proposes a transformer-based self-
supervised learning paradigm for the automatic
detection of rare pathologies on 3D medical
images. Through the use of masked volume
modelling on a large-scale unlabelled dataset, our
approach learns strong 3D representations that
outperform under sparse annotation.
Experimental results on BraTS 2021 and LIDC-
IDRI datasets showed our model outperforms
fully supervised U-Net and ResNet-3D baselines
across Dice coefficient, AUC-ROC, sensitivity and
F1 score.
promotes
attention

avenue

The attention-facilitated architecture
model interpretability by visualizing
activations (important regions for
deciding) on the input image with clinical
correlation, which can help to localize clinically
meaningful pathological findings and provide
transparent decision-making. In summary, our
findings suggest that when combined with
transformer architectures, self-supervised
learning can be used as a scalable and data-
approach
pathologies in complex 3D imaging domains. We
plan to focus future work on multi-institutional
validation, directly integrating federated learning

and real-time clinical deployment.

efficient towards detecting rare
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