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Abstract

Sleep apnea is an increasingly prevalent and potentially serious sleep disorder marked by repeated interruptions in
breathing during sleep. Polysomnography (PSG) serves as the clinical gold standard for diagnosis; however, its high
cost, complexity, and limited accessibility hinder large-scale and home-based screening efforts. This study introduces
a Heuristic Deep Learning (HeurDL) framework designed for the automated classification of sleep apnea events
utilizing single-channel electroencephalogram (EEG) signals. The proposed framework combines wavelet-based EEG
sub-band decomposition, heuristic domain-driven feature selection, and a lightweight one-dimensional convolutional
neural network (1D-CNN) to enhance classification performance while minimizing computational complexity. EEG
sub-bands of physiological significance are examined to identify distinguishing temporal, spectral, and nonlinear
features linked to neural patterns associated with apnea. The proposed method differs from traditional end-to-end
deep learning approaches by explicitly integrating heuristic knowledge from EEG physiology and empirical signal
analysis, which improves interpretability and generalization. The framework has been implemented and assessed
using publicly available benchmark EEG datasets, resulting in an overall classification accuracy of 91.2%, surpassing
multiple existing EEG-based and wavelet-CNN hybrid methods. The findings indicate that heuristic-guided deep
learning serves as an effective, scalable, and non-invasive approach for practical sleep apnea screening and decision-
support applications.

Keywords: Convolutional Neural Network, Deep Learning, Electroencephalogram, Heuristic Learning, Sleep Apnea
Detection.

Introduction

Periodic cessations of breathing while sleeping
characterize sleep apnea. This condition can lead
to reduced oxygen sleep
fragmentation, and several health
outcomes, including cognitive decline, heart
disease, daytime weariness, and metabolic
abnormalities (1, 2). Obstructive Sleep Apnea
(OSA) is the most common type of sleep apnea,

saturation,
adverse

impacting millions of people worldwide. Despite
its widespread occurrence, the understanding,
early diagnosis, and management of OSA remain
limited, particularly in rural regions and areas
with restricted healthcare resources. Currently,
the most reliable method for diagnosing sleep
apnea is overnight PSG, which is a comprehensive
and multimodal recording procedure conducted
in specialized sleep laboratories. It is a
comprehensive and multi-modal recording
methodology conducted in sleep laboratories. PSG
is highly precise; yet, it is also prohibitively costly,
labor-intensive, and impractical for continuous

monitoring of large cohorts. These limitations
have increased the demand for automated, user-
friendly, and cost-effective diagnostic solutions (3,
4). EEG, an essential aspect of PSG, has become a
vital signal modality because of its sensitivity to
cortical arousals and changes in sleep stages
associated with apneic events. Recent advances in
signal processing and machine learning
techniques enable the extraction of discriminative
information from EEG signals, facilitating accurate
classification of sleep disorders (5). Numerous
research initiatives had explored the classification
of sleep apnea using EEG signals in combination
with various feature extraction techniques and
Artificial Intelligence (AI)-based approaches. One
study had utilized EEG-derived features, such as
energy, entropy, and variance, to achieve optimal
classification performance using a Support Vector
Machine (SVM) classifier (6). Another approach
had employed an Ensemble Bagged Tree model to

analyze sleep-stage information derived from
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single-channel EEG signals, enabling
differentiation of sleep phases and identification
of salient features for apnea diagnosis (7).
Empirical Mode Decomposition (EMD) had been
applied to decompose EEG signals into Intrinsic
Mode Functions (IMFs), which were subsequently
used for OSA prediction through machine learning
algorithms (8). Sleep apnea detection had been
performed using nonlinear features extracted
from combined ECG and EEG signals and
integrated through a majority voting strategy,
achieving an accuracy of 94.42% (9). A
convolutional neural network (CNN) had been
developed to detect apnea events in single-
channel EEG data, reporting an accuracy of 69.9%
(10). Frequency-domain and nonlinear EEG
features had been exploited to design binary and
multiclass classifiers for apnea classification using
annotated EEG datasets (11). An expert system
based on ensemble learning had been proposed
for OSA identification by integrating discrete
wavelet transform (DWT) using the db8 wavelet
for EEG sub-band decomposition and statistical
feature extraction from single-channel signals
(12). Neural network-based approaches had
analyzed physiological signals such as heart rate
and respiratory effort to automatically identify
apnea episodes during sleep (13). Subsequent
studies had focused on EEG pattern classification
to differentiate between CSA, OSA, and normal
breathing events (14). The K-Nearest Neighbors
(KNN) classifier had been employed to categorize
subjects using inter-band energy ratio features
derived from multi-band EEG signals (15).

NNs integrated with transformer architectures
had been utilized to classify sleep stages using
single-channel EEG data for clinical decision-
support systems, achieving an accuracy of 91.4%
(16). Random Forest classifiers had been applied
to categorize sleep apnea using features extracted
from individual EEG frequency bands (17). The
neurophysiological effects of OSA had been
examined through multi-channel EEG analysis
using power spectral density, network-based
(18).
Convolutional recurrent neural networks (RNNs)
had been employed to detect apnea events and
estimate their duration using EEG data alone (19).

metrics, and EEG microstate analysis

A multi-instance learning framework had been
proposed 0SA
incorporating a mapping module and a subframe-

for automated detection,
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level multi-resolution convolutional feature
extractor (20). A quasi-optimal approach had
been developed to analyze single-channel EEG
data from overnight sleep studies, improving the
detection of apnea and hypopnea events and
enabling differentiation between OSA and CSA
(21).

A novel method has been introduced to detect
sleep apnea by analyzing distinctive EEG features
for classifying OSA, CSA, and normal breathing
patterns (22). Sleep apnea identification had also
been investigated through snoring sound analysis
using a dual-structure multi-scale neural network
with MFCC features, achieving an accuracy of
94.17% (23). A computer-aided diagnosis (CAD)
system had been developed using EEG-derived
complexity-based features, including Lempel-Ziv
complexity, fractal dimensions, generalized Hurst
exponents, and entropy measures, in conjunction
with KNN and SVM classifiers (24). Another
approach had involved the development of an
automated deep learning framework in which
CNNs temporal from
variational decomposition  outputs,
followed by BiLSTM layers for apnea classification
(25). A CAD system had also been proposed using
time-domain, wavelet-domain, and frequency-
domain EEG features combined with KNN and
SVM classifiers (26). Furthermore, sleep apnea
detection had been validated using a single EEG
feature,

extracted features

mode

namely Lempel-Ziv complexity, in
combination with discriminant analysis, decision
trees, and ensemble classifiers (27). Sleep stage
classification had been achieved using an
automated system based on photoplethysmogra-
phy (PPG) signals obtained from a standard finger
pulse oximeter, demonstrating the feasibility of
non-EEG-based monitoring approaches (28).
Recent research on EEG-based detection of sleep
apnea had faced several challenges. Many deep
learning models had relied solely on raw EEG
inputs, which had often led to overfitting and
insufficient generalization, particularly when
trained on limited or imbalanced datasets. These

models had frequently lacked interpretability and

had not incorporated physiological domain
knowledge, thereby reducing their clinical
reliability. Moreover, important frequency-

specific EEG patterns had often been overlooked
due to the absence of signal decomposition or
sub-band analysis. Approaches that had depended
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exclusively on either handcrafted features or
automatically learned representations had
encountered difficulties in achieving an optimal
balance between classification accuracy and
robustness. These limitations had highlighted the
need for hybrid, heuristic-based methodologies
that integrate deep learning with expert-guided
feature extraction.

This paper presents a Heuristic Deep Learning
(HeurDL) framework for sleep apnea event
classification using single-channel EEG signals.
Unlike conventional end-to-end CNN or wavelet-
CNN hybrid approaches, the proposed framework
explicitly incorporates domain-driven heuristic
knowledge into feature selection, model design,
and learning strategy, achieving a balance
between classification accuracy, interpretability,
and computational efficiency. In this context, the
term heuristic denotes the integration of
physiological EEG insights, empirical design
principles, and selective feature engineering,
rather than reliance solely on raw signal learning.
The framework combines wavelet-based EEG sub-
band decomposition with handcrafted statistical,

Vol 7 | Issue 1

spectral, and nonlinear feature extraction to
effectively capture apnea-specific EEG
characteristics. These features are then processed
using a lightweight and computationally efficient
1D-CNN architecture optimized through heuristic
principles, enhancing model interpretability and
robustness. The proposed approach is evaluated
on publicly available benchmark EEG datasets and
demonstrates competitive or superior
performance compared to conventional CNN
models and existing wavelet-CNN hybrid
methods, while remaining suitable for practical
and resource-constrained deployment.

Methodology

The proposed heuristic deep learning framework
was designed for the classification of EEG-based
sleep apnea events and is illustrated in Figure 1.
The framework consisted of multiple stages,
including EEG signal preprocessing, wavelet-
based sub-band decomposition, handcrafted
feature extraction, and classification using a
heuristic deep learning model.
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Figure 1: Heuristic Approach for Sleep Apnea Classification based on Deep Learning Framework

1658



Band and Deshmukh,

Sleep EDF Dataset

The proposed framework was assessed utilizing
the Sleep-EDF Expanded dataset, which is publicly
accessible from PhysioNet (29). This dataset
comprises full-night polysomnographic recor-
dings, featuring EEG signals sampled at 100 Hz.
This study extracted single-channel EEG data
(Fpz-Cz) to minimize complexity and concentrate
on brain activity pertinent to sleep arousals and
apneic events. The dataset's annotations were
utilized to classify epochs as apneic or non-apneic,
relying on airflow and respiratory signals.

Signal Pre-processing

The EEG signals were segmented into non-
overlapping epochs,  following
standard sleep scoring guidelines. All segments
underwent detrending and normalization to
eliminate baseline drift and inter-subject
variability. ~ After  eliminating  power-line
interference, a band-pass filter ranging from 0.5
to 45 Hz was applied to preserve the relevant
physiological frequency components. The notch
filters was set at 50 Hz. Segments containing
substantial artifacts or absent labels were omitted
from subsequent analysis.

Subband Decomposition

Each EEG segment was decomposed into five
subbands to extract meaningful frequency-
specific information, utilizing the Discrete
Wavelet Transform (DWT) with the Daubechies-4

(db4) mother wavelet. The EEG subbands

’ xr
aTr =

30-second

T max

To guarantee a subject-independent evaluation,
the dataset was partitioned into training and
testing sets, comprising 70% and 30% of the data,
respectively.

Heuristic Deep Learning Model
Architecture (1D-CNN)

A one-dimensional Convolutional Neural Network
(1D-CNN) was developed to classify each EEG
epoch as apneic or non-apneic using the extracted
architecture  was

features. The network

heuristically designed to optimize performance. It

Lnin

Tmin
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corresponded to standard frequency ranges: delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-30 Hz), and gamma (30-45 Hz). The
subbands reflect cortical activity and autonomic
responses that vary during sleep apnea events.
Feature Extraction

A comprehensive set of handcrafted features was
extracted to capture the temporal, spectral, and
nonlinear dynamics of the signals from each EEG
subband. These features were categorized into
three main types. Statistical features included the
mean, standard deviation, skewness, variance,
and Kkurtosis. Frequency-domain features
consisted of band power, relative power, and
spectral entropy. Nonlinear features comprised
approximate entropy, sample entropy, and
Higuchi’s fractal dimension. This heuristic feature
selection was guided by prior knowledge of EEG
signal behavior during sleep disturbances and
empirical relevance across subjects.

Feature Normalization and Dataset

Preparation

All extracted features were aggregated into a
unified feature vector for each epoch. To maintain
consistency across subjects and facilitate optimal
convergence during model training, min-max
normalization was applied, scaling all features to
the [0, 1] range. The final feature vectors were
normalized
represented by the equation [1].

through min-max scaling, as

[1]

consisted of an input layer matching the length of
the feature vector, followed by two convolutional
layers with kernel sizes of 3 and 5, each paired
with ReLU activation and max-pooling. Dropout
layers with a rate of 0.3 were incorporated to
reduce overfitting. Finally, a fully connected dense
layer was included, leading to a softmax output
layer for binary
architecture was chosen through iterative tuning
to balance model complexity and performance
and is defined in Table 1.

classification. The model
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Table 1: 1D-CNN Configuration
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Layer Details
Input 1D feature vector (length = total features)
ConvlD_1 64 filters, kernel size = 3, ReLU activation

MaxPooling1D_1
BatchNorm_1
Conv1D_2
MaxPooling1D_2
Dropout

Flatten

Dense_1
Dropout
Dense_Output

Pool size = 2

Normalization for training stability

128 filters, kernel size = 3, ReLU activation
Pool size = 2

Rate = 0.3 to reduce overfitting

Flattens 3D output to 1D

64 units, ReLU

Rate = 0.3

2 units (Softmax for binary classification)

Model Training and Evaluation
In the proposed Heuristic Deep Learning
Framework for EEG-Based Sleep Apnea Event
Classification, the model was trained using the
Adam optimizer with a learning rate of 0.001,
with categorical cross-entropy as the loss
function. To minimize overfitting, dropout layers
and early stopping were incorporated. Model
performance was evaluated using metrics derived
from the confusion matrix, which provides a
comprehensive summary of classification results.
In this context, the confusion matrix elements are
defined as follows:
a) Correctly detected apnea (True
Positives, TP): instances where the model
accurately identifies an apneic EEG epoch.

events

b) Correctly detected non-apnea events (True
Negatives, TN): instances where the model
correctly classifies an EEG epoch as non-
apneic.

c) Incorrectly identified apnea events (False
Positives, FP): cases where a non-apneic epoch
is mistakenly classified as apneic.

d) Missed apnea events (False Negatives, FN):
cases where an apneic epoch is incorrectly
classified as non-apneic.

The key evaluation metrics, accuracy, precision,

recall, and F1-score, were calculated based on

these definitions and equations given below [2-5]:

Correctly detected apnea events + Correctly detected nonapnea events

A =
ceuracy Total number of epochs [2]
o Correctly detected apnea events

Precision = — [3]

All epochs classified as apnea

Correctly detected apnea events
Recall = [4]

All acutal apnea epochs
2 * Precision * Recall

F1 — Score = [5]

Precision + Recall

These metrics provide a detailed evaluation of the
model’s ability to accurately detect sleep apnea

events while minimizing errors, which is
particularly important for imbalanced EEG
datasets.
Results

The proposed experimentations were carried out
on a Windows 11 workstation equipped with an
Intel i5 processor and 16 GB of RAM, using the
PyCharm IDE in combination with the Anaconda

distribution. EEG recordings from the PhysioNet
sleep apnea dataset served as the input for
training and evaluating the model. The
performance of the proposed heuristic deep
learning using
standard key metrics, computed from the
confusion matrix for both the training and testing
datasets. To ensure a comprehensive assessment,
the dataset was partitioned into 70% for training

framework was measured

and 30% for testing. The proposed heuristic 1D-
CNN model underwent evaluation using a subject-
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independent test set. The results were averaged
over a 10-fold cross-validation process. Ten-fold

Vol 7 | Issue 1

patterns identified in sleep recordings. The raw
signal functions as the main input for pre-

cross-validation was employed to ensure processing, sub-band decomposition, and the
robustness. Figure 2 displays a representative subsequent feature extraction within the
EEG signal obtained from the dataset, proposed classification framework.
demonstrating the characteristic waveform

Sleep EEG Signal
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Figure 2: Test Sample of Normal and Apnea Sleep Event

Figure 3 presents the results of the EEG signal
sub-band decomposition, effectively showcasing
the separate frequency components obtained via
wavelet transform. This decomposition highlights
the importance of each EEG sub-band, delta, theta,

decomposition effectively captures frequency-
specific changes induced by apneic events,
thereby enhancing model sensitivity. The
proposed framework decreases computational
demands relative to end-to-end deep models,
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Table 2

corresponding to the classification results of the
proposed model, illustrating the counts of
correctly and incorrectly classified apnea and
non-apnea events. This matrix provides a detailed

presents the

Figure 3: EEG Signal Sub-Band Decomposition

confusion matrix
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evaluation of the model’s ability to distinguish
between sleep apnea and normal epochs. The
findings demonstrate that the model successfully
detects both apneic and non-apneic events,
achieving high precision and
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Table 2: Confusion Matrix Classification

Vol 7 | Issue 1

Predicted Labels
Labels
Apnea Non-apnea
Apnea 185 15
Actual Label
ctual Labels Non-apnea 28 172

Table 3 presents the classification report, offering
a detailed evaluation of the proposed model’s
performance. The results indicate a balanced
performance across both apnea and non-apnea
classes. A precision of 89.3% for the apnea class
reflects a low rate of false positives, while a recall
of 93.0% highlights the model’s capability to
accurately identify true apnea events. The F1-

Table 3: Classification Report Performance

score is 91.1% for both classes, demonstrating
consistent classification performance. With an
overall accuracy of 91.2%, the model exhibits a
high level of predictive correctness. Additionally,
the macro and weighted averages further confirm
the model’s robustness and generalization ability
on the test dataset.

Class Precision (%) Recall (%) F-score (%)
Apnea 89.3 93.0 91.1
Non-apnea 93.1 89.2 91.1
Overall Accuracy 91.2
Table 4: State-of-art Comparison of Existing Models
Reference Models Approach Accuracy (%)
(10) Explainable CNN Deep Learning 69.90
(11) SVM Traditional ML 75.90
(12) Ensemble Learning ML Ensemble 86.00
(14) SVM Traditional ML 90.00
(23) Random Forest Ensemble Tree-Based 88.99
27) KNN Distance-Based ML 82.69
Proposed Model Heuristic 1-D DeepCNN Hybrid Deep Learning 91.2

Table 4 compares the proposed heuristic 1D-CNN
framework with various existing machine
learning and deep learning methods utilized for
EEG-based sleep apnea event classification.

The proposed heuristic deep learning framework

attains a peak accuracy of 91.2%, surpassing both

traditional Al models, as illustrated in the
comparison table. The Explainable CNN
emphasizes model interpretability; however,

lower performance is observed, which is likely
attributed to limited feature representation or
insufficient diversity in the training data (10).
Moderate to high classification accuracy is
achieved using SVM-based approaches; however,
strong dependence on handcrafted features is
observed, which may limit adaptability across
different subjects (11, 14). Improved
generalization over single-classifier models is
achieved through an ensemble-based approach;
nevertheless, the performance remains inferior to
that of the proposed model (12). An accuracy of
88.99% is achieved using the Random Forest
classifier due to its ability to model nonlinear
relationships; however, limitations may arise in
capturing temporal dependencies inherent in EEG

signals (23). An accuracy of 82.69% is achieved
using the KNN classifier, indicating reduced
effectiveness when handling high-dimensional or
noisy EEG feature spaces (27).

Discussion
The enhanced performance of the proposed
heuristic 1D-CNN was attributed to its effective
sub-band decomposition, which facilitated
frequency-specific analysis. Handcrafted features
were extracted to capture statistical, spectral, and
nonlinear EEG characteristics. A deep learning
classifier based on a 1D-CNN was employed,
capable of modeling complex patterns using a
compact and carefully optimized architecture.
These results demonstrated that the integration
of domain-specific signal processing with deep
learning substantially improved the classification
of sleep apnea events from EEG signals, thereby
providing a reliable and precise diagnostic
support mechanism.

The findings of the proposed study indicated
significant potential for practical sleep apnea
screening and preliminary diagnostic assistance
automated  EEG-based

through detection,
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eliminating the need for full polysomnography
and thereby reducing associated costs, setup
complexity, and clinician workload. The Heuristic
Deep Learning (HeurDL) framework was found to
be well suited for large-scale screening and home-
based monitoring, requiring rapid and non-
invasive assessments. However, its clinical
deployment necessitated addressing regulatory
and technological challenges, including validation
on large, multi-center datasets, compliance with
medical device regulations, data privacy and
security standards, and interoperability with
existing hospital systems and wearable health
technologies. Additionally, in EEG
acquisition protocols, device calibration, and
signal quality across platforms were expected to
influence performance, emphasizing the need for
standardized procedures and clinical certification
before its adoption as a diagnostic system rather
than solely a decision-support tool.

The proposed framework was specifically
designed for EEG signals, offering a simplified,
non-invasive, and scalable approach for sleep
apnea screening, particularly in home-based
environments. EEG was shown to capture sleep-
stage  dynamics and  neurophysiological
disturbances associated with apneic events,
enabling accurate event differentiation without
multiple biosignals. Although
multimodal polysomnography incorporating ECG,
airflow, and oxygen saturation remained the

variations

reliance on

clinical gold standard for definitive diagnosis,
exclusive reliance on EEG was recognized to
potentially sensitivity
respiratory events. Consequently, the proposed
framework served as an effective screening and
decision-support system, complementing rather

reduce to certain

than replacing comprehensive clinical diagnosis,
with multimodal identified as a
potential direction for future enhancement.

The Heuristic Deep Learning (HeurDL)
framework was designed to exhibit robustness

and generalizability under real-world conditions.

integration

The model adapted to inter-subject variability by
leveraging physiologically relevant EEG sub-band
through
decomposition, accounting for differences in age,
gender, and individual neurophysiology. The

features obtained wavelet

reliance on normalized spectral and temporal
instead of raw
compatibility with diverse

features
facilitated

signal amplitudes

EEG
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acquisition systems, including clinical PSG setups
and low-cost wearable devices. The heuristic
feature selection strategy focused on apnea-
specific EEG patterns, thereby reducing
interference from coexisting sleep disorders such
as insomnia or periodic limb movement disorder.
Future extensions involving  multi-label
classification were anticipated to further enhance
discrimination performance. The integration of
comprehensive preprocessing with CNN-based
learning enabled effective operation under real-
world conditions; including noise, motion
artifacts, and home sleep environments,
supporting scalable and non-invasive sleep apnea
detection.

Conclusion
This paper presented a heuristic deep learning
framework that integrated EEG sub-band

decomposition, domain-driven feature extraction,
and a 1D-CNN for the classification of sleep apnea
events. The application of DWT facilitated the
separation of physiologically significant frequency
bands, while the incorporation of statistical,
spectral, and nonlinear features provided a
comprehensive representation of EEG dynamics.
The experimental results demonstrated that the
proposed classification framework achieved an
accuracy of 91.2%, outperforming state-of-the-art
This hybrid approach
addressed several limitations identified in prior
studies, including overfitting on raw EEG data,
limited  interpretability, and  suboptimal
utilization of frequency-specific EEG information.
Furthermore, the model’s low computational

models. successfully

complexity and high classification performance
rendered it suitable for real-time and home-based
sleep monitoring applications.

Future models may incorporate
physiological data, such as SpO,, airflow, and ECG,
to enhance classification accuracy and identify

additional

various forms of apnea, including obstructive and
central types. Employing pre-trained models
alongside  domain  adaptation techniques
enhances performance across diverse datasets
and facilitates user personalization without

necessitating model retraining.

Abbreviations

DS-MS: Dual-Structure Multi-Scale, DWT: Discrete
Wavelet EMD: Mode
Decomposition, IMF: Intrinsic Mode Functions,

Transform, Empirical
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KNN: K-Nearest Neighbors, PSG: polysomnogra-
phy, OSA: Obstructive Sleep Apnea.
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