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Abstract 
Sleep apnea is an increasingly prevalent and potentially serious sleep disorder marked by repeated interruptions in 
breathing during sleep. Polysomnography (PSG) serves as the clinical gold standard for diagnosis; however, its high 
cost, complexity, and limited accessibility hinder large-scale and home-based screening efforts. This study introduces 
a Heuristic Deep Learning (HeurDL) framework designed for the automated classification of sleep apnea events 
utilizing single-channel electroencephalogram (EEG) signals. The proposed framework combines wavelet-based EEG 
sub-band decomposition, heuristic domain-driven feature selection, and a lightweight one-dimensional convolutional 
neural network (1D-CNN) to enhance classification performance while minimizing computational complexity. EEG 
sub-bands of physiological significance are examined to identify distinguishing temporal, spectral, and nonlinear 
features linked to neural patterns associated with apnea. The proposed method differs from traditional end-to-end 
deep learning approaches by explicitly integrating heuristic knowledge from EEG physiology and empirical signal 
analysis, which improves interpretability and generalization. The framework has been implemented and assessed 
using publicly available benchmark EEG datasets, resulting in an overall classification accuracy of 91.2%, surpassing 
multiple existing EEG-based and wavelet–CNN hybrid methods. The findings indicate that heuristic-guided deep 
learning serves as an effective, scalable, and non-invasive approach for practical sleep apnea screening and decision-
support applications. 

Keywords: Convolutional Neural Network, Deep Learning, Electroencephalogram, Heuristic Learning, Sleep Apnea 
Detection. 
 

Introduction 
Periodic cessations of breathing while sleeping 

characterize sleep apnea. This condition can lead 

to reduced oxygen saturation, sleep 

fragmentation, and several adverse health 

outcomes, including cognitive decline, heart 

disease, daytime weariness, and metabolic 

abnormalities (1, 2). Obstructive Sleep Apnea 

(OSA) is the most common type of sleep apnea, 

impacting millions of people worldwide. Despite 

its widespread occurrence, the understanding, 

early diagnosis, and management of OSA remain 

limited, particularly in rural regions and areas 

with restricted healthcare resources. Currently, 

the most reliable method for diagnosing sleep 

apnea is overnight PSG, which is a comprehensive 

and multimodal recording procedure conducted 

in specialized sleep laboratories. It is a 

comprehensive and multi-modal recording 

methodology conducted in sleep laboratories. PSG 

is highly precise; yet, it is also prohibitively costly, 

labor-intensive, and impractical for continuous 

monitoring of large cohorts. These limitations 

have increased the demand for automated, user-

friendly, and cost-effective diagnostic solutions (3, 

4). EEG, an essential aspect of PSG, has become a 

vital signal modality because of its sensitivity to 

cortical arousals and changes in sleep stages 

associated with apneic events. Recent advances in 

signal processing and machine learning 

techniques enable the extraction of discriminative 

information from EEG signals, facilitating accurate 

classification of sleep disorders (5). Numerous 

research initiatives had explored the classification 

of sleep apnea using EEG signals in combination 

with various feature extraction techniques and 

Artificial Intelligence (AI)-based approaches. One 

study had utilized EEG-derived features, such as 

energy, entropy, and variance, to achieve optimal 

classification performance using a Support Vector 

Machine (SVM) classifier (6). Another approach 

had employed an Ensemble Bagged Tree model to 

analyze sleep-stage information derived from  
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single-channel EEG signals, enabling 

differentiation of sleep phases and identification 

of salient features for apnea diagnosis (7). 

Empirical Mode Decomposition (EMD) had been 

applied to decompose EEG signals into Intrinsic 

Mode Functions (IMFs), which were subsequently 

used for OSA prediction through machine learning 

algorithms (8). Sleep apnea detection had been 

performed using nonlinear features extracted 

from combined ECG and EEG signals and 

integrated through a majority voting strategy, 

achieving an accuracy of 94.42% (9). A 

convolutional neural network (CNN) had been 

developed to detect apnea events in single-

channel EEG data, reporting an accuracy of 69.9% 

(10). Frequency-domain and nonlinear EEG 

features had been exploited to design binary and 

multiclass classifiers for apnea classification using 

annotated EEG datasets (11). An expert system 

based on ensemble learning had been proposed 

for OSA identification by integrating discrete 

wavelet transform (DWT) using the db8 wavelet 

for EEG sub-band decomposition and statistical 

feature extraction from single-channel signals 

(12). Neural network-based approaches had 

analyzed physiological signals such as heart rate 

and respiratory effort to automatically identify 

apnea episodes during sleep (13). Subsequent 

studies had focused on EEG pattern classification 

to differentiate between CSA, OSA, and normal 

breathing events (14). The K-Nearest Neighbors 

(KNN) classifier had been employed to categorize 

subjects using inter-band energy ratio features 

derived from multi-band EEG signals (15). 

NNs integrated with transformer architectures 

had been utilized to classify sleep stages using 

single-channel EEG data for clinical decision-

support systems, achieving an accuracy of 91.4% 

(16). Random Forest classifiers had been applied 

to categorize sleep apnea using features extracted 

from individual EEG frequency bands (17). The 

neurophysiological effects of OSA had been 

examined through multi-channel EEG analysis 

using power spectral density, network-based 

metrics, and EEG microstate analysis (18). 

Convolutional recurrent neural networks (RNNs) 

had been employed to detect apnea events and 

estimate their duration using EEG data alone (19). 

A multi-instance learning framework had been 

proposed for automated OSA detection, 

incorporating a mapping module and a subframe-

level multi-resolution convolutional feature 

extractor (20). A quasi-optimal approach had 

been developed to analyze single-channel EEG 

data from overnight sleep studies, improving the 

detection of apnea and hypopnea events and 

enabling differentiation between OSA and CSA 

(21). 

A novel method has been introduced to detect 

sleep apnea by analyzing distinctive EEG features 

for classifying OSA, CSA, and normal breathing 

patterns (22). Sleep apnea identification had also 

been investigated through snoring sound analysis 

using a dual-structure multi-scale neural network 

with MFCC features, achieving an accuracy of 

94.17% (23). A computer-aided diagnosis (CAD) 

system had been developed using EEG-derived 

complexity-based features, including Lempel–Ziv 

complexity, fractal dimensions, generalized Hurst 

exponents, and entropy measures, in conjunction 

with KNN and SVM classifiers (24). Another 

approach had involved the development of an 

automated deep learning framework in which 

CNNs extracted temporal features from 

variational mode decomposition outputs, 

followed by BiLSTM layers for apnea classification 

(25). A CAD system had also been proposed using 

time-domain, wavelet-domain, and frequency-

domain EEG features combined with KNN and 

SVM classifiers (26). Furthermore, sleep apnea 

detection had been validated using a single EEG 

feature, namely Lempel–Ziv complexity, in 

combination with discriminant analysis, decision 

trees, and ensemble classifiers (27). Sleep stage 

classification had been achieved using an 

automated system based on photoplethysmogra-

phy (PPG) signals obtained from a standard finger 

pulse oximeter, demonstrating the feasibility of 

non-EEG-based monitoring approaches (28). 

Recent research on EEG-based detection of sleep 

apnea had faced several challenges. Many deep 

learning models had relied solely on raw EEG 

inputs, which had often led to overfitting and 

insufficient generalization, particularly when 

trained on limited or imbalanced datasets. These 

models had frequently lacked interpretability and 

had not incorporated physiological domain 

knowledge, thereby reducing their clinical 

reliability. Moreover, important frequency-

specific EEG patterns had often been overlooked 

due to the absence of signal decomposition or 

sub-band analysis. Approaches that had depended 
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exclusively on either handcrafted features or 

automatically learned representations had 

encountered difficulties in achieving an optimal 

balance between classification accuracy and 

robustness. These limitations had highlighted the 

need for hybrid, heuristic-based methodologies 

that integrate deep learning with expert-guided 

feature extraction. 

This paper presents a Heuristic Deep Learning 

(HeurDL) framework for sleep apnea event 

classification using single-channel EEG signals. 

Unlike conventional end-to-end CNN or wavelet–

CNN hybrid approaches, the proposed framework 

explicitly incorporates domain-driven heuristic 

knowledge into feature selection, model design, 

and learning strategy, achieving a balance 

between classification accuracy, interpretability, 

and computational efficiency. In this context, the 

term heuristic denotes the integration of 

physiological EEG insights, empirical design 

principles, and selective feature engineering, 

rather than reliance solely on raw signal learning. 

The framework combines wavelet-based EEG sub-

band decomposition with handcrafted statistical, 

spectral, and nonlinear feature extraction to 

effectively capture apnea-specific EEG 

characteristics. These features are then processed 

using a lightweight and computationally efficient 

1D-CNN architecture optimized through heuristic 

principles, enhancing model interpretability and 

robustness. The proposed approach is evaluated 

on publicly available benchmark EEG datasets and 

demonstrates competitive or superior 

performance compared to conventional CNN 

models and existing wavelet–CNN hybrid 

methods, while remaining suitable for practical 

and resource-constrained deployment. 
 

Methodology 
The proposed heuristic deep learning framework 

was designed for the classification of EEG-based 

sleep apnea events and is illustrated in Figure 1. 

The framework consisted of multiple stages, 

including EEG signal preprocessing, wavelet-

based sub-band decomposition, handcrafted 

feature extraction, and classification using a 

heuristic deep learning model. 

 

 
Figure 1: Heuristic Approach for Sleep Apnea Classification based on Deep Learning Framework 
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Sleep EDF Dataset 
The proposed framework was assessed utilizing 

the Sleep-EDF Expanded dataset, which is publicly 

accessible from PhysioNet (29). This dataset 

comprises full-night polysomnographic recor-

dings, featuring EEG signals sampled at 100 Hz. 

This study extracted single-channel EEG data 

(Fpz-Cz) to minimize complexity and concentrate 

on brain activity pertinent to sleep arousals and 

apneic events. The dataset's annotations were 

utilized to classify epochs as apneic or non-apneic, 

relying on airflow and respiratory signals. 

Signal Pre-processing 
The EEG signals were segmented into non-

overlapping 30-second epochs, following 

standard sleep scoring guidelines. All segments 

underwent detrending and normalization to 

eliminate baseline drift and inter-subject 

variability. After eliminating power-line 

interference, a band-pass filter ranging from 0.5 

to 45 Hz was applied to preserve the relevant 

physiological frequency components. The notch 

filters was set at 50 Hz. Segments containing 

substantial artifacts or absent labels were omitted 

from subsequent analysis. 

Subband Decomposition 
Each EEG segment was decomposed into five 

subbands to extract meaningful frequency-

specific information, utilizing the Discrete 

Wavelet Transform (DWT) with the Daubechies-4 

(db4) mother wavelet. The EEG subbands 

corresponded to standard frequency ranges: delta 

(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 

(13–30 Hz), and gamma (30–45 Hz). The 

subbands reflect cortical activity and autonomic 

responses that vary during sleep apnea events. 

Feature Extraction 
A comprehensive set of handcrafted features was 

extracted to capture the temporal, spectral, and 

nonlinear dynamics of the signals from each EEG 

subband. These features were categorized into 

three main types. Statistical features included the 

mean, standard deviation, skewness, variance, 

and kurtosis. Frequency-domain features 

consisted of band power, relative power, and 

spectral entropy. Nonlinear features comprised 

approximate entropy, sample entropy, and 

Higuchi’s fractal dimension. This heuristic feature 

selection was guided by prior knowledge of EEG 

signal behavior during sleep disturbances and 

empirical relevance across subjects. 

Feature Normalization and Dataset 

Preparation 
All extracted features were aggregated into a 

unified feature vector for each epoch. To maintain 

consistency across subjects and facilitate optimal 

convergence during model training, min-max 

normalization was applied, scaling all features to 

the [0, 1] range. The final feature vectors were 

normalized through min-max scaling, as 

represented by the equation [1]. 

                          

 
 

To guarantee a subject-independent evaluation, 

the dataset was partitioned into training and 

testing sets, comprising 70% and 30% of the data, 

respectively. 

Heuristic Deep Learning Model 

Architecture (1D-CNN) 
A one-dimensional Convolutional Neural Network 

(1D-CNN) was developed to classify each EEG 

epoch as apneic or non-apneic using the extracted 

features. The network architecture was 

heuristically designed to optimize performance. It 

consisted of an input layer matching the length of 

the feature vector, followed by two convolutional 

layers with kernel sizes of 3 and 5, each paired 

with ReLU activation and max-pooling. Dropout 

layers with a rate of 0.3 were incorporated to 

reduce overfitting. Finally, a fully connected dense 

layer was included, leading to a softmax output 

layer for binary classification. The model 

architecture was chosen through iterative tuning 

to balance model complexity and performance 

and is defined in Table 1. 

 

 

 

 

 

 

[1] 
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Table 1: 1D-CNN Configuration 
Layer Details 

Input 1D feature vector (length = total features) 

Conv1D_1 64 filters, kernel size = 3, ReLU activation 

MaxPooling1D_1 Pool size = 2 

BatchNorm_1 Normalization for training stability 

Conv1D_2 128 filters, kernel size = 3, ReLU activation 

MaxPooling1D_2 Pool size = 2 

Dropout Rate = 0.3 to reduce overfitting 

Flatten Flattens 3D output to 1D 

Dense_1 64 units, ReLU 

Dropout Rate = 0.3 

Dense_Output 2 units (Softmax for binary classification) 
 

Model Training and Evaluation 

In the proposed Heuristic Deep Learning 

Framework for EEG-Based Sleep Apnea Event 

Classification, the model was trained using the 

Adam optimizer with a learning rate of 0.001, 

with categorical cross-entropy as the loss 

function. To minimize overfitting, dropout layers 

and early stopping were incorporated. Model 

performance was evaluated using metrics derived 

from the confusion matrix, which provides a 

comprehensive summary of classification results. 

In this context, the confusion matrix elements are 

defined as follows: 

a) Correctly detected apnea events (True 

Positives, TP): instances where the model 

accurately identifies an apneic EEG epoch. 

b) Correctly detected non-apnea events (True 

Negatives, TN): instances where the model 

correctly classifies an EEG epoch as non-

apneic. 

c) Incorrectly identified apnea events (False 

Positives, FP): cases where a non-apneic epoch 

is mistakenly classified as apneic. 

d) Missed apnea events (False Negatives, FN): 

cases where an apneic epoch is incorrectly 

classified as non-apneic. 

The key evaluation metrics, accuracy, precision, 

recall, and F1-score, were calculated based on 

these definitions and equations given below [2-5]: 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑝𝑛𝑒𝑎 𝑒𝑣𝑒𝑛𝑡𝑠 +  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑛𝑎𝑝𝑛𝑒𝑎 𝑒𝑣𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠
 [2] 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑝𝑛𝑒𝑎 𝑒𝑣𝑒𝑛𝑡𝑠

𝐴𝑙𝑙 𝑒𝑝𝑜𝑐ℎ𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑎𝑝𝑛𝑒𝑎
 [3] 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑝𝑛𝑒𝑎 𝑒𝑣𝑒𝑛𝑡𝑠

𝐴𝑙𝑙 𝑎𝑐𝑢𝑡𝑎𝑙 𝑎𝑝𝑛𝑒𝑎 𝑒𝑝𝑜𝑐ℎ𝑠
 [4] 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 [5] 

 

These metrics provide a detailed evaluation of the 

model’s ability to accurately detect sleep apnea 

events while minimizing errors, which is 

particularly important for imbalanced EEG 

datasets. 
 

Results 
The proposed experimentations were carried out 

on a Windows 11 workstation equipped with an 

Intel i5 processor and 16 GB of RAM, using the 

PyCharm IDE in combination with the Anaconda 

distribution. EEG recordings from the PhysioNet 

sleep apnea dataset served as the input for 

training and evaluating the model. The 

performance of the proposed heuristic deep 

learning framework was measured using 

standard key metrics, computed from the 

confusion matrix for both the training and testing 

datasets. To ensure a comprehensive assessment, 

the dataset was partitioned into 70% for training 

and 30% for testing. The proposed heuristic 1D-

CNN model underwent evaluation using a subject-



Band and Deshmukh,                                                                                                                                         Vol 7 ǀ Issue 1 

1661 
 

independent test set. The results were averaged 

over a 10-fold cross-validation process. Ten-fold 

cross-validation was employed to ensure 

robustness. Figure 2 displays a representative 

EEG signal obtained from the dataset, 

demonstrating the characteristic waveform 

patterns identified in sleep recordings. The raw 

signal functions as the main input for pre-

processing, sub-band decomposition, and the 

subsequent feature extraction within the 

proposed classification framework. 

 

 
Figure 2: Test Sample of Normal and Apnea Sleep Event 

 

Figure 3 presents the results of the EEG signal 

sub-band decomposition, effectively showcasing 

the separate frequency components obtained via 

wavelet transform. This decomposition highlights 

the importance of each EEG sub-band, delta, theta, 

alpha, beta, and gamma, in the extraction of 

features for the proposed classification 

framework. The application of sub-band 

decomposition effectively captures frequency-

specific changes induced by apneic events, 

thereby enhancing model sensitivity. The 

proposed framework decreases computational 

demands relative to end-to-end deep models, 

rendering it appropriate for real-time or 

embedded applications in portable sleep 

monitoring devices. 
 

 
Figure 3: EEG Signal Sub-Band Decomposition 

 

Table 2 presents the confusion matrix 

corresponding to the classification results of the 

proposed model, illustrating the counts of 

correctly and incorrectly classified apnea and 

non-apnea events. This matrix provides a detailed 

evaluation of the model’s ability to distinguish 

between sleep apnea and normal epochs. The 

findings demonstrate that the model successfully 

detects both apneic and non-apneic events, 

achieving high precision and recall rates.
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Table 2: Confusion Matrix Classification 

 Labels 
Predicted Labels 

Apnea Non-apnea 

Actual Labels 
Apnea 185 15 

Non-apnea 28 172 
 

Table 3 presents the classification report, offering 

a detailed evaluation of the proposed model’s 

performance. The results indicate a balanced 

performance across both apnea and non-apnea 

classes. A precision of 89.3% for the apnea class 

reflects a low rate of false positives, while a recall 

of 93.0% highlights the model’s capability to 

accurately identify true apnea events. The F1-

score is 91.1% for both classes, demonstrating 

consistent classification performance. With an 

overall accuracy of 91.2%, the model exhibits a 

high level of predictive correctness. Additionally, 

the macro and weighted averages further confirm 

the model’s robustness and generalization ability 

on the test dataset. 

 

Table 3: Classification Report Performance 
Class Precision (%) Recall (%) F-score (%) 

Apnea 89.3 93.0 91.1 

Non-apnea 93.1 89.2 91.1 

Overall Accuracy  91.2 
 

Table 4: State-of-art Comparison of Existing Models 
Reference Models Approach Accuracy (%) 

(10) Explainable CNN Deep Learning 69.90 

(11) SVM Traditional ML 75.90 

(12) Ensemble Learning ML Ensemble 86.00 

(14) SVM Traditional ML 90.00 

(23) Random Forest Ensemble Tree-Based 88.99 

(27) KNN Distance-Based ML 82.69 

Proposed Model Heuristic 1-D DeepCNN Hybrid Deep Learning 91.2 
 

Table 4 compares the proposed heuristic 1D-CNN 

framework with various existing machine 

learning and deep learning methods utilized for 

EEG-based sleep apnea event classification. 

The proposed heuristic deep learning framework 

attains a peak accuracy of 91.2%, surpassing both 

traditional AI models, as illustrated in the 

comparison table. The Explainable CNN 

emphasizes model interpretability; however, 

lower performance is observed, which is likely 

attributed to limited feature representation or 

insufficient diversity in the training data (10). 

Moderate to high classification accuracy is 

achieved using SVM-based approaches; however, 

strong dependence on handcrafted features is 

observed, which may limit adaptability across 

different subjects (11, 14). Improved 

generalization over single-classifier models is 

achieved through an ensemble-based approach; 

nevertheless, the performance remains inferior to 

that of the proposed model (12). An accuracy of 

88.99% is achieved using the Random Forest 

classifier due to its ability to model nonlinear 

relationships; however, limitations may arise in 

capturing temporal dependencies inherent in EEG 

signals (23). An accuracy of 82.69% is achieved 

using the KNN classifier, indicating reduced 

effectiveness when handling high-dimensional or 

noisy EEG feature spaces (27). 
 

Discussion 
The enhanced performance of the proposed 

heuristic 1D-CNN was attributed to its effective 

sub-band decomposition, which facilitated 

frequency-specific analysis. Handcrafted features 

were extracted to capture statistical, spectral, and 

nonlinear EEG characteristics. A deep learning 

classifier based on a 1D-CNN was employed, 

capable of modeling complex patterns using a 

compact and carefully optimized architecture. 

These results demonstrated that the integration 

of domain-specific signal processing with deep 

learning substantially improved the classification 

of sleep apnea events from EEG signals, thereby 

providing a reliable and precise diagnostic 

support mechanism. 

The findings of the proposed study indicated 

significant potential for practical sleep apnea 

screening and preliminary diagnostic assistance 

through automated EEG-based detection, 
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eliminating the need for full polysomnography 

and thereby reducing associated costs, setup 

complexity, and clinician workload. The Heuristic 

Deep Learning (HeurDL) framework was found to 

be well suited for large-scale screening and home-

based monitoring, requiring rapid and non-

invasive assessments. However, its clinical 

deployment necessitated addressing regulatory 

and technological challenges, including validation 

on large, multi-center datasets, compliance with 

medical device regulations, data privacy and 

security standards, and interoperability with 

existing hospital systems and wearable health 

technologies. Additionally, variations in EEG 

acquisition protocols, device calibration, and 

signal quality across platforms were expected to 

influence performance, emphasizing the need for 

standardized procedures and clinical certification 

before its adoption as a diagnostic system rather 

than solely a decision-support tool. 

The proposed framework was specifically 

designed for EEG signals, offering a simplified, 

non-invasive, and scalable approach for sleep 

apnea screening, particularly in home-based 

environments. EEG was shown to capture sleep-

stage dynamics and neurophysiological 

disturbances associated with apneic events, 

enabling accurate event differentiation without 

reliance on multiple biosignals. Although 

multimodal polysomnography incorporating ECG, 

airflow, and oxygen saturation remained the 

clinical gold standard for definitive diagnosis, 

exclusive reliance on EEG was recognized to 

potentially reduce sensitivity to certain 

respiratory events. Consequently, the proposed 

framework served as an effective screening and 

decision-support system, complementing rather 

than replacing comprehensive clinical diagnosis, 

with multimodal integration identified as a 

potential direction for future enhancement. 

The Heuristic Deep Learning (HeurDL) 

framework was designed to exhibit robustness 

and generalizability under real-world conditions. 

The model adapted to inter-subject variability by 

leveraging physiologically relevant EEG sub-band 

features obtained through wavelet 

decomposition, accounting for differences in age, 

gender, and individual neurophysiology. The 

reliance on normalized spectral and temporal 

features instead of raw signal amplitudes 

facilitated compatibility with diverse EEG 

acquisition systems, including clinical PSG setups 

and low-cost wearable devices. The heuristic 

feature selection strategy focused on apnea-

specific EEG patterns, thereby reducing 

interference from coexisting sleep disorders such 

as insomnia or periodic limb movement disorder. 

Future extensions involving multi-label 

classification were anticipated to further enhance 

discrimination performance. The integration of 

comprehensive preprocessing with CNN-based 

learning enabled effective operation under real-

world conditions; including noise, motion 

artifacts, and home sleep environments, 

supporting scalable and non-invasive sleep apnea 

detection. 
 

Conclusion 
This paper presented a heuristic deep learning 

framework that integrated EEG sub-band 

decomposition, domain-driven feature extraction, 

and a 1D-CNN for the classification of sleep apnea 

events. The application of DWT facilitated the 

separation of physiologically significant frequency 

bands, while the incorporation of statistical, 

spectral, and nonlinear features provided a 

comprehensive representation of EEG dynamics. 

The experimental results demonstrated that the 

proposed classification framework achieved an 

accuracy of 91.2%, outperforming state-of-the-art 

models. This hybrid approach successfully 

addressed several limitations identified in prior 

studies, including overfitting on raw EEG data, 

limited interpretability, and suboptimal 

utilization of frequency-specific EEG information. 

Furthermore, the model’s low computational 

complexity and high classification performance 

rendered it suitable for real-time and home-based 

sleep monitoring applications. 

Future models may incorporate additional 

physiological data, such as SpO₂, airflow, and ECG, 

to enhance classification accuracy and identify 

various forms of apnea, including obstructive and 

central types. Employing pre-trained models 

alongside domain adaptation techniques 

enhances performance across diverse datasets 

and facilitates user personalization without 

necessitating model retraining. 
 

Abbreviations 
DS-MS: Dual-Structure Multi-Scale, DWT: Discrete 

Wavelet Transform, EMD: Empirical Mode 

Decomposition, IMF: Intrinsic Mode Functions, 
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KNN: K-Nearest Neighbors, PSG: polysomnogra-

phy, OSA: Obstructive Sleep Apnea. 
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