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Abstract 
Brain Computer Interfaces (BCIs) will convert the thoughts of individuals with physical disabilities into commands for 
devices to enable them autonomous mobility. The Electroencephalogram (EEG) is widely favoured as a control signal 
due to its ease of acquisition compared to invasive recordings. While the affordability of EEG equipment allows for the 
use of numerous recording channels, this abundance increases computational complexity, necessitating optimal 
channel selection strategies to improve efficiency and classification accuracy. Deep Neural Networks (DNNs) often face 
scalability issues with multidimensional, locally correlated inputs, making them impractical for such applications. 
Convolutional Neural Networks (CNNs) are efficient for analysing BCI data but require careful hyperparameter tuning 
to achieve optimal performance. This paper introduces a framework for classifying BCI channel selection using deep 
learning techniques. The study primarily concentrates on refining the hyper parameters of deep learning algorithms 
through metaheuristic techniques, specifically employing Discriminated Stochastic Diffusion Search (SDS) to enhance 
BCI channel selection. The findings indicate that the proposed hyperparameter optimization methods, such as 
Discriminated-SDS, significantly enhance classification accuracy. The proposed D-SDS balances exploration and 
exploitation, mitigates the local optima issue, and is especially advantageous for intricate deep learner architectures 
such as VGGNet, ResNet, and InceptionNet. Hyperparameter optimization in EEG-based BCI systems can substantially 
improve performance, enhancing their efficiency and reliability. 

Keywords: BCI Channel Selection, Deep Learning, Discriminated-SDS, Electroencephalogram (EEG), Hyper-
Parameter, Stochastic Diffusion Search (SDS). 
 

Introduction 
Brain-Computer Interfaces (BCIs) facilitate the 

translation of neural impulses into commands for 

the operation of external equipment. BCIs are 

categorized based on the recording methodology: 

non-invasive and invasive. Electroencephalogra-

phy (EEG), a non-invasive technique that captures 

signals from the scalp's surface, is the most 

favoured approach owing to its affordability and 

easier implementation (1). Invasive BCIs capture 

signals by many techniques, including Electrocor-

ticography, spiking activity, and Stereo-

Electroencephalography. These approaches can 

yield a superior signal-to-noise ratio compared to 

non-invasive approaches, so they are of 

considerable importance in the advancement of 

high-performance BCI. Recent demonstrations 

have shown the efficacy of brain-computer 

interfaces via an invasive stereo electroencepha-

lography paradigm. Ease of acquisition is crucial 

for EEG-based BCI applications because it ensures 

non-invasive, portable, and affordable signal 

collection, making the technology accessible and 

user-friendly. This practicality enables real-time 

interaction and scalability for diverse applications, 

such as assistive devices, gaming, and neuro 

feedback, ensuring widespread adoption (2). BCIs 

follow a three-stage process of pre-processing 

signals and filtering, extraction of features, and 

signal classification. Pre-processing is primarily 

dependent upon the method of data capture and 

typically encompasses broad-band filtering and 

trend elimination. Feature engineering is 

conducted to derive valuable information or 

statistical characteristic from a signal. Frequency 

representation is a frequently utilized characte-

ristic. Dimensionality reduction is frequently 

employed to decrease computation time and 

mitigate over fitting through Principal Component 

Analysis and Independent Component Analysis. 

Classification is accomplished by machine learning 
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algorithms or deep learning methods (3, 4). The 

extensive array of channels may result in high-

dimensional data, increasing computing 

complexity and possible noise, which might impair 

the efficacy of classification algorithms. Processing 

all channels necessitates considerable computa-

tional resources, rendering real-time applications 

difficult. Not all channels contribute equally to the 

task, as some carry greater noise or redundant 

information. Wrapper approaches assess feature 

subsets according to their impact on the efficacy of 

a particular classifier (5). The affordability of EEG 

equipment enables the use of numerous channels 

for detailed brain activity recording; however, 

managing multiple channels can increase 

complexity and computational cost. This drives 

research into optimal channel selection, focusing 

on achieving high performance with fewer 

channels to balance efficiency and practicality in 

real-world applications. 

Deep learning has been widely applied in brain-

computer interfaces and has proven effective in 

overcoming the aforementioned challenges. Deep 

learning offers two advantages: firstly, it operates 

directly on raw brain signals to extract important 

information using back-propagation, thereby 

circumventing pre-processing stage. Secondly, the 

intricate architectures of deep neural networks 

can encapsulate both high-level information and 

latent dependencies. The learning rate is a crucial 

hyperparameter in deep learning, influencing the 

convergence velocity and stability of the training 

procedure. Determining suitable decay learning 

rates can improve the efficacy and resilience of 

deep learning models in EEG categorization (6, 7). 

Hyperparameter optimization entails exploring a 

high-dimensional environment characterized by 

intricate and non-linear interactions between 

hyper parameters and model performance. 

Metaheuristic algorithms are engineered to 

efficiently explore and exploit intricate search 

areas. Optimal adjustment of hyper parameters, 

including batch size, learning rate, dropout rate, 

layer count, can significantly enhance model 

accuracy, robustness, and generalization abilities. 

Appropriately selected hyper parameters can 

accelerate the training process and enhance 

resource efficiency, which is essential for 

computationally intensive deep learning models 

(8, 9). 

Metaheuristic algorithms, such as Particle Swarm 

Optimization, Genetic Algorithm, and Simulated 

Annealing, are effective instruments for 

addressing intricate optimization challenges. A 

prevalent issue encountered by these algorithms is 

their tendency to become trapped in local optima, 

resulting in inferior solutions (10, 11). This study 

proposes the development of improved variations, 

including the D-SDS algorithm, to address this 

constraint and enhance the exploration-

exploitation equilibrium. This study's primary 

contributions include: 

This study proposes the use of D-SDS for 

optimizing channel selection in EEG-based BCIs, 

reducing computational complexity while 

maintaining high classification accuracy. 

The framework integrates D-SDS with deep 

learning models such as VGGNet, ResNet, and 

InceptionNet, effectively optimizing hyper 

parameters by balancing exploration and 

exploitation, mitigating local optima issues, and 

addressing scalability challenges in complex 

neural networks. 

An innovative bagging algorithm that creates 

interpolation data surrounding misclassified 

instances utilizing a possibility function, intended 

for application in BCIs was presented in past study 

(12). Unlike AdaBoost, which increases the weight 

of misclassified instances for future training, in this 

past study they generate virtual data using a 

membership function focused on these instances 

and add them right away to subsequent datasets. 

This expands the training set and allows for finer 

tuning of the discriminative boundary. They 

propose a bagging-style ensemble method based 

on possibility distribution and assess its 

effectiveness for basic computations with NIRS 

data. 

Research groups comprise the Novel Adaboost 

Classifier Algorithm and MLP (13). The collection, 

comprising 64.4 MB, has 30 photos of healthy 

brains and 30 images of injured brains. Kaggle 

supplied pictures for the identification of brain 

strokes. To identify the training dataset, 500 

records are necessary, with 80% allocated for 

training and 20% for testing. A distinctive 

Adaboost technique and a multilayer perceptron 

approach were evaluated utilizing ten datasets to  

enhance research precision. Twenty sets were 

compared ten times per iteration. The G power test 

with α=0.05 and β=0.2 results in an approximate 
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power of 80%. A unique Adaboost classifier 

method (88.84%) outperforms MLP (83.40%). The 

independent sample test value is significant at 0.01 

(p<0.05). 

The essential challenge of categorizing brain-wave 

patterns linked to specific brain states, employing 

various machine learning algorithms (14). The 

main objectives include constructing and 

enhancing these models, evaluating the effects of 

adjusting hyper parameters on measures such as 

accuracy, consistency, and prediction time. 

Amongst the various machine learning models 

studied, Decision Tree exhibits performed the best 

consistently with 90.03% accuracy. After 

hyperparameter adjustment, Support Vector 

Machine and Linear Regression demonstrate 

significant accuracy improvements of 15.63% and 

1.50%, respectively, hence boosting the 

consistency of all models. 

An BCI based on Optimal Deep Learning (ODL) 

model, termed ODL-BCI, which was refined using 

hyperparameter tuning methods to overcome the 

challenges of real-time classification of student 

confusion (15). Utilizing the "confused student 

EEG brainwave" dataset, the Bayesian 

optimization is applied to optimize the hyper 

parameters of the proposed deep learning model. 

The model includes input, output layers and 

multiple hidden layers, where the activation 

functions, learning rates and number of nodes are 

established using specified hyper parameters. The 

researchers compare their model in the past study 

with leading techniques and traditional classifiers, 

finding that the ODL-BCI performs best. It 

enhances accuracy by 4% to 9% compared to 

existing methods, surpassing all other classifiers in 

the process. 

An innovative method for extracting spatial-

temporal features from EEG data using stacked 

multi-ScaleCNNs was introduced in past research 

(16). This approach processes raw EEG signals 

collected from geographically dispersed 

electrodes, capturing spatial features from a 2D 

grid of electrode placements via multi-scale 2D 

convolutions, while temporal features are 

extracted using varying window sizes. To address 

the issue of imbalanced class representation, in the 

past study, the researcher proposed a fine-tuning 

ensemble strategy with dynamic class weights, 

ensuring better learning of minority class samples. 

Testing across datasets with diverse class 

distributions revealed that integrating this fine-

tuning ensemble into deep learning models 

consistently improves performance across both 

sessions and subjects. Ensemble Multi-Scale CNN 

surpasses current methods in cross-subject and 

cross-session tasks, as shown by thorough 

experiments. 
 

Methodology 
Despite the availability of numerous models in the 

literature, there is a necessity to improve 

classification accuracy for BCI applications. As 

deep learning models become deeper, their 

parameters increase quickly, causing over fitting. 

Simultaneously, many hyper parameters 

substantially influence the efficacy of the CNN 

model. Specifically, hyper parameters including 

epoch count, batch size, and learning rate selection 

are crucial for achieving effective results (17, 18). 

Hyper parameters considered in this study are: 

a) The learning rate regulates the magnitude of 

each step in the gradient descent process.  

b) Batch size influences the stability and velocity 

of training.  

c) The number of epochs indicates the frequency 

with which the complete training dataset is 

processed by the model.  

Appropriate weight initialization can avert 

vanishing or exploding gradients. Dropout is 

employed to mitigate over fitting by randomly 

deactivating a proportion of input units during the 

training process. Due to the laborious and 

imperfect nature of the trial-and-error approach 

for hyperparameter tuning, the application of 

metaheuristic algorithms is useful. This section 

discusses the hyperparameter tuning of SDS, 

VGGNET, RESNET, InceptionNet, and discrimina-

ted-SDS algorithms. 

Hyperparameter Tuning Using SDS 
Establish a preliminary cohort of agents. Each 

agent signifies a hypothesis, which in this instance 

refers to a particular configuration of hyper 

parameters for the deep learning model (i.e., 

learning rate, number of epochs, dropout rate, 

batch size). Randomly initialize the hyper 

parameters for each agent within specified ranges. 

Batch size: [32, 256]; Learning rate: [1e-5, 1e-1]; 

Dropout rate: [0, 0.5]; Number of epochs: [50, 200]. 

Train the deep learning model (VGGNet/ResNet) 

utilizing the hyper parameters given by each agent. 

Assess the model's performance on a validation set 
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by computing a fitness metric, such as validation 

accuracy or validation loss. Reiterate the stages of 

hypothesis development, evaluation, communica-

tion, and decision-making for a certain number of 

iterations (19). 

Stochastic Diffusion Search (SDS) presented an 

innovative probabilistic methodology for 

addressing optimal pattern recognition and 

matching challenges. SDS is a distributed 

computational method employing interaction 

among simple agents for global search and 

optimization within a multi-agent population 

framework (20). 

In contrast to numerous search algorithms 

inspired by nature, SDS provides a well-defined 

mathematical structure that accounts for its 

approach to resource distribution, assured global 

convergence, robustness, minimal prerequisites, 

and efficient linear time complexity. 

The steps in SDS algorithm are.  

a) Agents are created with randomly assigned 

hyper parameters as candidate solutions. 

b) The process repeats until the stopping criterion 

is met. 

c) Each agent partially evaluates its current hyper 

parameters for performance. 

d) Agents are sorted as active (promising) or 

inactive (requiring changes). 

e) Active agents share successful hypotheses with 

others. 

f) Agents exchange information and may adopt 

superior hypotheses. 

g) The algorithm ends with selection of the best 

solution found. 

In every SDS search, each agent upholds a 

hypothesis, h, delineating a potential solution to 

the problem. Following initialization, two steps 

ensue, Testing Phase and Diffusion Phase (e.g. 

gathering and dissemination of knowledge). 

SDS tests the agent hypothesis with a partial 

evaluation during testing, producing a domain-

independent Boolean result. Subsequently, 

depending on the utilized method, effective 

hypotheses disseminate among the population, 

hence facilitating the transmission of information 

regarding possibly optimal solutions throughout 

the complete agent population. In the Testing 

phase, every agent conducts a partial evaluation of 

its own hypothesis, represented as pFE, where pFE 

is determined by applying a specific function to the 

agent’s hypothesis (pFE = f(h)). In the Diffusion 

phase, agents interact by selecting peers, allowing 

them to potentially exchange their current 

hypotheses. 

AdaBoost is an ensemble learning algorithm where 

set weak classifiers is used to improve 

performance accuracy by adjusting the weights 

assigned to each training sample. This algorithm 

boosts the accuracy of a weak classifier, which may 

initially make inaccurate predictions, by iteratively 

refining it into a stronger classifier with higher 

predictive accuracy (21). AdaBoost's key hyper 

parameters include the number of estimators (n 

estimators), which determines number of weak 

learners, as more estimators may improve 

accuracy but end up with a over fitted ensemble. 

The learning rate (learning rate) controls the 

contribution of each weak learner to the final 

model; a lower learning rate can enhance 

generalization but typically requires more 

estimators. Additionally, the base estimator (base 

estimator) specifies the type of weak learner, often 

a decision tree by default, but it can be any 

classifier capable of fitting the data. 

The VGG network is a pre-trained CNN model that 

gained significant recognition in the ImageNet 

Large Scale Visual Recognition Challenge 

(ILSVRC2014). It achieved an impressive 92.7% 

accuracy on the ImageNet dataset, which contains 

14 million images across 1,000 categories. The 

architecture consists of five convolutional blocks, 

with each block containing an increasing number 

of filters—64, 128, 256, 512, and 512, respectively. 

Each block is followed by a max-pooling layer for 

spatial pooling. The network concludes with three 

fully connected layers that employ dropout to 

prevent over fitting. The final layer uses the 

SoftMax activation function to output probability 

values for each of the classes (22). 

The ResNet architecture was initially introduced 

for object detection (23). ResNet facilitated the 

efficient training of deeper networks by 

incorporating a shortcut that connects the output 

of the residual block to its input, so mitigating the 

vanishing gradient issue. In a study evaluating 

artificial neural networks for object identification, 

ResNet-101, a variant of the ResNet family, was 

identified as one of the most robust models for 

predicting neural and behavioural data. The 

ResNet architecture, utilizing fNIRS-based deep 

learning, demonstrated excellent performance in 

decoding RPS motions during motor imagery. 
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Consequently, ResNet101 was chosen for model 

comparison, utilizing 125-Hz resampled data as 

input to ensure consistency across various 

architectures. EEGNet and ResNet had a total of 

4,691 and 42,626,435 parameters, respectively.  

The Inception architecture has played a pivotal 

role in driving advancements within deep learning 

frameworks. This network is available in two 

forms: the basic inception model and a variant that 

incorporates dimensionality reduction techniques. 

The naive inception model comprises several 

blocks. Each block comprises several convolutional 

layers operating at the same level. Each layer 

comprises many filters with designated kernel 

sizes (1×1, 3×3, and 5×5). The concatenated 

outputs are diminished by the use of a max-pooling 

operation and forwarded to the subsequent 

inception block.  

Proposed Discriminated Stochastic 

Diffusion Search (D-SDS)  
The Lévy flight foraging theory posits that because 

Lévy flights maximize random searches, biological 

species have consequently evolved to utilize Lévy 

flights.  

A Lévy flight is a process in which, at each time step 

j, the random walker executes an instantaneous 

jump lj selected from a probability density function 

P(l) characterized by a power law tail in the long-

distance regime as described in equation [1]: 

P(l) ∼ (1) –μ                               [1] 
 

with 1 < μ ≤ 3. For μ < 3, the second moment of P(l) 

diverges, and for μ < 2, the first moment likewise 

diverges. Lévy walks and flights result in super 

diffusion, where the mean squared displacement of 

the walker's position in equation [2]: 

(x2)∼t2H                      [2] 
 

scales super linearly with time t. Lévy flights 

permit H > 1/2. This is in contrast to diffusive 

walks, for which the Hurst exponent H is equal to 

1/2.  

Lévy flights and walks exhibit scale invariance and 

fractal characteristics. A magnification of a 

segment of a genuine Lévy walk trajectory will 

disclose a substructure with statistically 

equivalent characteristics, except cut-offs. Lévy 

walks exhibit uniformity across all scales, with the 

exception of cut-offs. Their diffusive characteris-

tics are independent of scale. A key notion is to the 

utilization of μ to compare super diffusive Lévy 

searches with Brownian searches characterized by 

normal diffusion. By analysing the search 

efficiencies as μ is varied, we may ascertain the 

extent of advantage derived from leveraging 

diffusivity and stochasticity in this particular 

method (24). 

D-SDS is an advanced iteration of the conventional 

SDS algorithm, aimed at mitigating particular 

constraints, including the local optima issue, and 

enhancing the convergence rate. Levy Flights are a 

form of random walk distinguished by extensive 

leaps, which can markedly improve the algorithm's 

capacity to investigate remote and potentially 

superior areas of the search space (25, 26). 

The D-SDS incorporates two more phases inside 

the SDS algorithm.  

Levy Flight Step: Execute Levy Flight steps to 

intermittently relocate agents to remote areas of 

the search space. This facilitates the avoidance of 

local optima and guarantees enhanced exploration. 

The Levy Flight step is mathematically expressed 

as in equation [3]:  

L(λ)=1/〖∣Δt∣〗^(1+λ)                    [3] 
 

Where Δt represents a minor time increment, and 

λ is the Levy distribution parameter (often 0< λ≤ 

2). 

Implement an adaptive fitness threshold method 

to direct the agents in the search process. Modify 

the fitness threshold adaptively according to the 

population's performance over iterations. The 

population's fitness exhibit minimal enhancement 

over several iterations, up the threshold to 

promote exploration of novel regions. If 

substantial improvement is noted, lower the 

barrier to emphasize exploitation. 

D-SDS was chosen over other meta-heuristic 

techniques due to its unique ability to balance 

exploration and exploitation, which is critical for 

optimizing complex deep learning architectures. 

Unlike conventional methods, D-SDS effectively 

mitigates the risk of local optima using 

discrimination strategies, making it particularly 

suitable for handling the high-dimensional, locally 

correlated inputs typical of EEG-based BCI 

systems. The proposed D-SDS methodology can be 

observed from Figure 1 and the two integral 

algorithmic components which are represented in 

subsequent sections (Table 1 and 2). 
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Figure 1: Methodology of Proposed Discriminated SDS 

 

 

Table 1: Algorithm - Discriminated-SDS for Channel Selection  

Algorithm - Discriminated-SDS for Channel Selection  

Input:  

 EEG dataset D with N channels 

 Initial parameters: α, β, λ, max_iter, δ, threshold bounds 

 Classifier model (e.g., Adaboost, VGG) 

Output: 

 Optimal subset of EEG channels 

 1. Initialize population of agents with random channel subsets 

 2. Set initial fitness threshold T 

 3. For each agent: 

  a. Randomly select a hypothesis (subset of channels) 

 4. Repeat until max_iter or convergence: 

   a. Evaluate fitness using: 

   f(x) = α * exp(-1/C) + β * MSE 

  b. For each agent: 

   i. Compare fitness with a randomly selected neighbor 

    ii. If worse: 

    - Replace hypothesis using neighbor's OR 

     - Apply Levy Flight with probability p_levy 

   iii. If better: 

    - Retain current hypothesis 

  c. Update adaptive threshold T: 

   If mean fitness improvement < ε for k iterations → T += δ 

   Else → T -= δ 

 5. Select agent(s) with highest fitness scores 

 6. Return best-performing subset of EEG channels 

End 

 

 

 

 

 

 



Subramanian and Daniel,                                                                                                                                 Vol 7 ǀ Issue 1 

 

551 
 

Table 2: Algorithm - Discriminated-SDS for Hyper parameter Tuning  

Algorithm - Discriminated-SDS for Hyperparameter Tuning  

 

Input: 

 EEG dataset D 

 Deep learning model architecture M (VGGNet / ResNet / InceptionNet) 

 Hyperparameter search space: 

  Learning rate ∈ [0.00001, 0.0001, 0.001, 0.01, 0.1] 

  Batch size ∈ {32, 64, 128, 256} 

  Dropout rate ∈ [0, 0.1,…,0.5] 

  Epochs ∈ [50,…., 200] 

 Number of agents N 

 Maximum iterations T 

 Fitness weights α=0.6, β=0.4 

Output: 

 Optimal hyperparameter configuration H* with highest fitness score 

Initialize: 

Create a population of N agents. 

Assign each agent a random hyperparameter configuration Hi. 

Evaluate Initial Fitness: 

For each agent: 

Train model M with Hi 

Compute validation loss (MSE) and model complexity penalty 

Evaluate fitness  

Repeat for each iteration (1 to T): 

 a. Diffusion Step: 

  For each agent Ai: 

  Randomly select peer agent Aj 

  If f(Hj)>f(Hi): 

   Replace Hi with Hj 

  Else: 

   Retain Hi 

 b. Stagnation Check and Levy Flight: 

  If no significant improvement in average fitness for k iterations: 

  Apply Levy Flight to generate new Hi for exploration. 

 c. Re-evaluate Fitness: 

  Train model using updated configurations 

  Update fitness scores 

Select Optimal Agent: 

 Identify agent A* with highest fitness score 

End 
 

Results 
In this section, evaluate the SDS and D-SDS 

algorithm, the classification methods using 

Adaboost, hyperparameter tunned VGGNET, 

hyperparameter tunned Resnet and 

hyperparameter tunned InceptionNet. BCI 

Competition III – Dataset IVa was used for 

evaluating the algorithms. Motor Imagery (MI) 

tasks of 5 subjects were used. Each subject has 

recordings from multiple sessions. The first two 

sessions are for training; the third is for testing. 

The summary of results is presented in Table 3. 

The accuracy, precision, recall and F-measure as 

shown in Figure 2 to 5. 
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Table 3: Summary of Result 

 

 
 Figure 2: Accuracy for D-SDS 

 

 

 
Figure 3: Precision for D-SDS 

 

  SDS 

Adaboost 

D-SDS 

Adaboost 

SDS 

Hyperparameter 

tuned VGGNET 

SDS 

HyperParameter 

Tuned Resnet 

SDS 

Hyperparameter 

Tuned 

InceptionNet 

D-SDS 

Hyperparameter 

tuned VGGNET 

D-SDS 

HyperParameter 

Tuned Resnet 

D- SDS 

Hyperparameter 

Tuned 

InceptionNet 

Classification 

accuracy 

0.9194 0.9324 0.9378 0.9564 0.9617 0.9778 0.9731 0.9903 

Precision for 

right 

0.9209 0.9352 0.9378 0.9543 0.9655 0.9804 0.971 0.983 

Precision for 

foot 

0.9123 0.9301 0.9272 0.9381 0.9649 0.9894 0.9555 0.9746 

Recall for right 0.9363 0.9529 0.9509 0.964 0.9835 0.9819 0.9805 0.9964 

Recall for foot 0.8928 0.9104 0.9045 0.9213 0.9408 0.9665 0.9378 0.949 

F measure for 

right 

0.9288 0.944 0.9412 0.9511 0.974 0.9936 0.9684 0.9836 

F measure for 

foot 

0.9057 0.9231 0.9164 0.9269 0.9518 0.9727 0.9434 0.959 
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Figure 4: Recall for D-SDS 

 

 
Figure 5: F Measure for D-SDS

Discussion 
The baseline Adaboost classifier achieved an 

accuracy of 0.9324 when optimized using D-SDS as 

observed in Figure 2. This demonstrates the 

enhanced capability of Discriminated-SDS to 

escape local optima and better optimize hyper 

parameters. D-SDS dramatically improved the 

accuracy to 0.9778. This substantial enhancement 

underscores the advantage of D-SDS in fine-tuning 

the hyper parameters of deep CNNs like VGGNet, 

leading to near-optimal configurations. The 

accuracy further increased to 0.9731 with D-SDS 

Inception. This result indicates that D-SDS 

effectively addresses the local optima problem and 

enhances ResNet’s performance by better 

navigating the hyperparameter space. 

The baseline Adaboost classifier, when optimised 

using D-SDS, achieved a precision of 0.932, as 

shown in Figure 3. Hyperparameter tuned VGGNet 

classifier achieved precision of 0.984 when 

optimized using D-SDS. Hyperparameter tuned 

ResNet classifier achieved the precision of 0.963 

when optimized using D-SDS. Hyperparameter 

tuned InceptionNet classifier achieved the 

precision of 0.978 when optimized using D-SDS. It 

can be observed in Figure 4 that the baseline 

Adaboost classifier achieved the recall of 0.932 

when optimized using D-SDS. Hyperparameter 

tuned VGGNet classifier achieved recall of 0.986 

when optimized using D-SDS. Hyperparameter 

tuned ResNet classifier achieved the recall of 0.959 

when optimized using D-SDS. Hyperparameter 

tuned InceptionNet classifier achieved the recall of 

0.973 when optimized using D-SDS. 

It can be observed in Figure 5 that the baseline 

Adaboost classifier achieved the F-measure of 

0.9335 when optimized using D-SDS. 

Hyperparameter tuned VGGNet classifier achieved 

F-measure of 0.983when optimized using D-SDS. 

Hyperparameter tuned ResNet classifier achieved 

the F-measure of 0.956 when optimized using D-
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SDS. Hyperparameter tuned InceptionNet 

classifier achieved the F-measure of 0.971 when 

optimized using D-SDS. 
 

Conclusion 
Hyperparameter optimization plays a crucial role 

in enhancing machine learning model performance 

by ensuring better generalization, preventing over 

fitting, stabilizing training, and improving 

computational efficiency. This study highlights the 

efficacy of SDS and D-SDS in navigating the 

hyperparameter space for EEG-based BCIs. By 

dynamically refining exploration techniques and 

fitness evaluation criteria, Discriminated-SDS 

demonstrated significant improvements across all 

models. For instance, Adaboost's accuracy 

improved from 0.9194 with SDS to 0.9324 with D-

SDS, VGGNet increased from 0.9378 to 0.9778, 

ResNet rose from 0.9564 to 0.9731, and 

InceptionNet achieved the most significant 

enhancement, from 0.9617 to 0.9903. 

The study’s findings emphasize the transformative 

potential of D-SDS for optimizing deep learning 

architectures and ensemble techniques, setting a 

benchmark for future research. These 

advancements provide a scalable framework for 

addressing high-dimensional data challenges, with 

implications extending beyond BCIs to other 

domains such as natural language processing and 

medical imaging. Future work could focus on 

applying this framework to real-time BCI systems, 

enhancing computational efficiency, and 

integrating it with more advanced architectures to 

further improve performance and adaptability in 

diverse applications. 
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