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Abstract

Brain Computer Interfaces (BCIs) will convert the thoughts of individuals with physical disabilities into commands for
devices to enable them autonomous mobility. The Electroencephalogram (EEG) is widely favoured as a control signal
due to its ease of acquisition compared to invasive recordings. While the affordability of EEG equipment allows for the
use of numerous recording channels, this abundance increases computational complexity, necessitating optimal
channel selection strategies to improve efficiency and classification accuracy. Deep Neural Networks (DNNs) often face
scalability issues with multidimensional, locally correlated inputs, making them impractical for such applications.
Convolutional Neural Networks (CNNs) are efficient for analysing BCI data but require careful hyperparameter tuning
to achieve optimal performance. This paper introduces a framework for classifying BCI channel selection using deep
learning techniques. The study primarily concentrates on refining the hyper parameters of deep learning algorithms
through metaheuristic techniques, specifically employing Discriminated Stochastic Diffusion Search (SDS) to enhance
BCI channel selection. The findings indicate that the proposed hyperparameter optimization methods, such as
Discriminated-SDS, significantly enhance classification accuracy. The proposed D-SDS balances exploration and
exploitation, mitigates the local optima issue, and is especially advantageous for intricate deep learner architectures
such as VGGNet, ResNet, and InceptionNet. Hyperparameter optimization in EEG-based BCI systems can substantially
improve performance, enhancing their efficiency and reliability.

Keywords: BCI Channel Selection, Deep Learning, Discriminated-SDS, Electroencephalogram (EEG), Hyper-
Parameter, Stochastic Diffusion Search (SDS).

Introduction

Brain-Computer Interfaces (BCls) facilitate the non-invasive, portable, and affordable signal

translation of neural impulses into commands for
the operation of external equipment. BCIs are
categorized based on the recording methodology:
Electroencephalogra-
phy (EEG), a non-invasive technique that captures
signals from the scalp's surface, is the most
favoured approach owing to its affordability and

non-invasive and invasive.

easier implementation (1). Invasive BCIs capture
signals by many techniques, including Electrocor-
ticography, spiking activity, and
Electroencephalography. These approaches can
yield a superior signal-to-noise ratio compared to
non-invasive

Stereo-

approaches, so they are of
considerable importance in the advancement of
high-performance BCI. Recent demonstrations
have shown the efficacy of brain-computer
interfaces via an invasive stereo electroencepha-
lography paradigm. Ease of acquisition is crucial
for EEG-based BCI applications because it ensures

collection, making the technology accessible and
user-friendly. This practicality enables real-time
interaction and scalability for diverse applications,
such as assistive devices, gaming, and neuro
feedback, ensuring widespread adoption (2). BCIs
follow a three-stage process of pre-processing
signals and filtering, extraction of features, and
signal classification. Pre-processing is primarily
dependent upon the method of data capture and
typically encompasses broad-band filtering and
trend engineering is
conducted to derive valuable information or

elimination. Feature
statistical characteristic from a signal. Frequency
representation is a frequently utilized characte-
ristic. Dimensionality reduction is frequently
employed to decrease computation time and
mitigate over fitting through Principal Component
Analysis and Independent Component Analysis.

Classification is accomplished by machine learning
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algorithms or deep learning methods (3, 4). The
extensive array of channels may result in high-
dimensional  data, increasing computing
complexity and possible noise, which might impair
the efficacy of classification algorithms. Processing
all channels necessitates considerable computa-
tional resources, rendering real-time applications
difficult. Not all channels contribute equally to the
task, as some carry greater noise or redundant
information. Wrapper approaches assess feature
subsets according to their impact on the efficacy of
a particular classifier (5). The affordability of EEG
equipment enables the use of numerous channels
for detailed brain activity recording; however,
managing multiple channels can increase
complexity and computational cost. This drives
research into optimal channel selection, focusing
on achieving high performance with fewer
channels to balance efficiency and practicality in
real-world applications.

Deep learning has been widely applied in brain-
computer interfaces and has proven effective in
overcoming the aforementioned challenges. Deep
learning offers two advantages: firstly, it operates
directly on raw brain signals to extract important
information using back-propagation, thereby
circumventing pre-processing stage. Secondly, the
intricate architectures of deep neural networks
can encapsulate both high-level information and
latent dependencies. The learning rate is a crucial
hyperparameter in deep learning, influencing the
convergence velocity and stability of the training
procedure. Determining suitable decay learning
rates can improve the efficacy and resilience of
deep learning models in EEG categorization (6, 7).
Hyperparameter optimization entails exploring a
high-dimensional environment characterized by
intricate and non-linear interactions between
hyper
Metaheuristic algorithms
efficiently explore and exploit intricate search
areas. Optimal adjustment of hyper parameters,
including batch size, learning rate, dropout rate,

parameters and model performance.

are engineered to

layer count, can significantly enhance model
accuracy, robustness, and generalization abilities.
Appropriately selected hyper parameters can
accelerate the training process and enhance
which for
computationally intensive deep learning models
(8,9).

resource efficiency, is essential
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Metaheuristic algorithms, such as Particle Swarm
Optimization, Genetic Algorithm, and Simulated
Annealing, are effective instruments for
addressing intricate optimization challenges. A
prevalentissue encountered by these algorithms is
their tendency to become trapped in local optima,
resulting in inferior solutions (10, 11). This study
proposes the development of improved variations,
including the D-SDS algorithm, to address this
constraint and enhance the exploration-
exploitation equilibrium. This study's primary
contributions include:

This study proposes the use of D-SDS for
optimizing channel selection in EEG-based BClIs,
reducing computational complexity = while
maintaining high classification accuracy.

The framework integrates D-SDS with deep
learning models such as VGGNet, ResNet, and
InceptionNet, effectively optimizing hyper
parameters by balancing exploration and
exploitation, mitigating local optima issues, and
addressing scalability challenges
neural networks.

An innovative bagging algorithm that creates
interpolation data surrounding misclassified
instances utilizing a possibility function, intended
for application in BCIs was presented in past study
(12). Unlike AdaBoost, which increases the weight
of misclassified instances for future training, in this
past study they generate virtual data using a
membership function focused on these instances

in complex

and add them right away to subsequent datasets.
This expands the training set and allows for finer
tuning of the discriminative boundary. They
propose a bagging-style ensemble method based
on possibility distribution and assess its
effectiveness for basic computations with NIRS
data.

Research groups comprise the Novel Adaboost
Classifier Algorithm and MLP (13). The collection,
comprising 64.4 MB, has 30 photos of healthy
brains and 30 images of injured brains. Kaggle
supplied pictures for the identification of brain
strokes. To identify the training dataset, 500
records are necessary, with 80% allocated for
training and 20% for testing. A distinctive
Adaboost technique and a multilayer perceptron
approach were evaluated utilizing ten datasets to
enhance research precision. Twenty sets were
compared ten times per iteration. The G power test
with a=0.05 and $=0.2 results in an approximate
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power of 80%. A unique Adaboost classifier
method (88.84%) outperforms MLP (83.40%). The
independent sample test value is significant at 0.01
(p<0.05).

The essential challenge of categorizing brain-wave
patterns linked to specific brain states, employing
various machine learning algorithms (14). The
main objectives include constructing and
enhancing these models, evaluating the effects of
adjusting hyper parameters on measures such as
accuracy, consistency, and prediction time.
Amongst the various machine learning models
studied, Decision Tree exhibits performed the best
consistently with 90.03% accuracy. After
hyperparameter adjustment, Support Vector
Machine and Linear Regression demonstrate
significant accuracy improvements of 15.63% and
1.50%, respectively, hence boosting the
consistency of all models.

An BCI based on Optimal Deep Learning (ODL)
model, termed ODL-BCI, which was refined using
hyperparameter tuning methods to overcome the
challenges of real-time classification of student
confusion (15). Utilizing the "confused student
EEG  brainwave" dataset, the Bayesian
optimization is applied to optimize the hyper
parameters of the proposed deep learning model.
The model includes input, output layers and
multiple hidden layers, where the activation
functions, learning rates and number of nodes are
established using specified hyper parameters. The
researchers compare their model in the past study
with leading techniques and traditional classifiers,
finding that the ODL-BCI performs best. It
enhances accuracy by 4% to 9% compared to
existing methods, surpassing all other classifiers in
the process.

An innovative method for extracting spatial-
temporal features from EEG data using stacked
multi-ScaleCNNs was introduced in past research
(16). This approach processes raw EEG signals
collected from  geographically  dispersed
electrodes, capturing spatial features from a 2D
grid of electrode placements via multi-scale 2D
convolutions, while features
extracted using varying window sizes. To address
the issue of imbalanced class representation, in the
past study, the researcher proposed a fine-tuning

temporal are

ensemble strategy with dynamic class weights,
ensuring better learning of minority class samples.

Testing across datasets with diverse class
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distributions revealed that integrating this fine-
tuning ensemble into deep learning models
consistently improves performance across both
sessions and subjects. Ensemble Multi-Scale CNN
surpasses current methods in cross-subject and
cross-session tasks, shown by thorough
experiments.

as

Methodology
Despite the availability of numerous models in the
literature, there is a necessity to improve
classification accuracy for BCI applications. As
deep learning models become deeper, their
parameters increase quickly, causing over fitting.
Simultaneously, many hyper parameters
substantially influence the efficacy of the CNN
model. Specifically, hyper parameters including
epoch count, batch size, and learning rate selection
are crucial for achieving effective results (17, 18).
Hyper parameters considered in this study are:
a) The learning rate regulates the magnitude of
each step in the gradient descent process.
b) Batch size influences the stability and velocity
of training.
¢) The number of epochs indicates the frequency
with which the complete training dataset is
processed by the model.
Appropriate weight initialization
vanishing or exploding gradients. Dropout is

can avert

employed to mitigate over fitting by randomly
deactivating a proportion of input units during the
training process.
imperfect nature of the trial-and-error approach
for hyperparameter tuning, the application of
metaheuristic algorithms is useful. This section

Due to the laborious and

discusses the hyperparameter tuning of SDS,
VGGNET, RESNET, InceptionNet, and discrimina-
ted-SDS algorithms.

Hyperparameter Tuning Using SDS
Establish a preliminary cohort of agents. Each
agent signifies a hypothesis, which in this instance
refers to a particular configuration of hyper
parameters for the deep learning model (i.e,
learning rate, number of epochs, dropout rate,
batch hyper
parameters for each agent within specified ranges.
Batch size: [32, 256]; Learning rate: [le-5, le-1];
Dropoutrate: [0, 0.5]; Number of epochs: [50, 200].
Train the deep learning model (VGGNet/ResNet)
utilizing the hyper parameters given by each agent.
Assess the model's performance on a validation set

size). Randomly initialize the
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by computing a fitness metric, such as validation
accuracy or validation loss. Reiterate the stages of
hypothesis development, evaluation, communica-
tion, and decision-making for a certain number of
iterations (19).

Stochastic Diffusion Search (SDS) presented an
innovative  probabilistic  methodology  for
addressing optimal pattern recognition and
matching challenges. SDS is a distributed
computational method employing
among simple agents for global search and
optimization within a multi-agent population
framework (20).

In contrast to numerous

interaction

search algorithms
inspired by nature, SDS provides a well-defined
mathematical structure that accounts for its
approach to resource distribution, assured global
convergence, robustness, minimal prerequisites,
and efficient linear time complexity.

The steps in SDS algorithm are.

a) Agents are created with randomly assigned
hyper parameters as candidate solutions.

The process repeats until the stopping criterion
is met.

Each agent partially evaluates its current hyper
parameters for performance.

Agents are sorted as active (promising) or
inactive (requiring changes).

Active agents share successful hypotheses with
others.

b)

<)

d)
e)
f) Agents exchange information and may adopt
superior hypotheses.

g) The algorithm ends with selection of the best
solution found.

In every SDS search, each agent upholds a
hypothesis, h, delineating a potential solution to
the problem. Following initialization, two steps
ensue, Testing Phase and Diffusion Phase (e.g.
gathering and dissemination of knowledge).

SDS tests the agent hypothesis with a partial
evaluation during testing, producing a domain-
independent Boolean result. Subsequently,
depending on the utilized method, effective
hypotheses disseminate among the population,
hence facilitating the transmission of information
regarding possibly optimal solutions throughout
the complete agent population. In the Testing
phase, every agent conducts a partial evaluation of
its own hypothesis, represented as pFE, where pFE
is determined by applying a specific function to the
agent’s hypothesis (pFE = f(h)). In the Diffusion
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phase, agents interact by selecting peers, allowing
them to potentially exchange their current
hypotheses.

AdaBoostis an ensemble learning algorithm where
set weak classifiers is wused to improve
performance accuracy by adjusting the weights
assigned to each training sample. This algorithm
boosts the accuracy of a weak classifier, which may
initially make inaccurate predictions, by iteratively
refining it into a stronger classifier with higher
predictive accuracy (21). AdaBoost's key hyper
parameters include the number of estimators (n
estimators), which determines number of weak
learners, as more estimators may improve
accuracy but end up with a over fitted ensemble.
The learning rate (learning rate) controls the
contribution of each weak learner to the final
model; a lower learning rate can enhance
generalization but typically requires more
estimators. Additionally, the base estimator (base
estimator) specifies the type of weak learner, often
a decision tree by default, but it can be any
classifier capable of fitting the data.

The VGG network is a pre-trained CNN model that
gained significant recognition in the ImageNet
Large Scale Visual Recognition Challenge
(ILSVRC2014). It achieved an impressive 92.7%
accuracy on the ImageNet dataset, which contains
14 million images across 1,000 categories. The
architecture consists of five convolutional blocks,
with each block containing an increasing number
of filters—64, 128, 256, 512, and 512, respectively.
Each block is followed by a max-pooling layer for
spatial pooling. The network concludes with three
fully connected layers that employ dropout to
prevent over fitting. The final layer uses the
SoftMax activation function to output probability
values for each of the classes (22).

The ResNet architecture was initially introduced
for object detection (23). ResNet facilitated the
efficient training of deeper networks by
incorporating a shortcut that connects the output
of the residual block to its input, so mitigating the
vanishing gradient issue. In a study evaluating
artificial neural networks for object identification,
ResNet-101, a variant of the ResNet family, was
identified as one of the most robust models for
predicting neural and behavioural data. The
ResNet architecture, utilizing fNIRS-based deep
learning, demonstrated excellent performance in
decoding RPS motions during motor imagery.
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Consequently, ResNet101 was chosen for model
comparison, utilizing 125-Hz resampled data as
input to ensure consistency across various
architectures. EEGNet and ResNet had a total of
4,691 and 42,626,435 parameters, respectively.
The Inception architecture has played a pivotal
role in driving advancements within deep learning
frameworks. This network is available in two
forms: the basic inception model and a variant that
incorporates dimensionality reduction techniques.
The naive inception model comprises several
blocks. Each block comprises several convolutional
layers operating at the same level. Each layer
comprises many filters with designated kernel
sizes (1x1, 3x3, and 5x5). The concatenated
outputs are diminished by the use of a max-pooling
operation and forwarded to the subsequent
inception block.

Proposed Discriminated Stochastic

Diffusion Search (D-SDS)
The Lévy flight foraging theory posits that because
Lévy flights maximize random searches, biological
species have consequently evolved to utilize Lévy
flights.
A Lévy flight is a process in which, at each time step
j, the random walker executes an instantaneous
jump lj selected from a probability density function
P(1) characterized by a power law tail in the long-
distance regime as described in equation [1]:

P ~ (1) (1]
with 1 < p < 3. For p < 3, the second moment of P(1)
diverges, and for p < 2, the first moment likewise
diverges. Lévy walks and flights result in super
diffusion, where the mean squared displacement of
the walker's position in equation [2]:

(x?)~t2H [2]

scales super linearly with time t. Lévy flights
permit H > 1/2. This is in contrast to diffusive
walks, for which the Hurst exponent H is equal to
1/2.

Lévy flights and walks exhibit scale invariance and
fractal characteristics. A magnification of a
segment of a genuine Lévy walk trajectory will
disclose with
equivalent characteristics, except cut-offs. Lévy
walks exhibit uniformity across all scales, with the
exception of cut-offs. Their diffusive

a substructure statistically

characteris-
tics are independent of scale. A key notion is to the
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utilization of p to compare super diffusive Lévy
searches with Brownian searches characterized by
normal diffusion. By analysing the search
efficiencies as p is varied, we may ascertain the
extent of advantage derived from leveraging
diffusivity and stochasticity in this particular
method (24).

D-SDS is an advanced iteration of the conventional
SDS algorithm, aimed at mitigating particular
constraints, including the local optima issue, and
enhancing the convergence rate. Levy Flights are a
form of random walk distinguished by extensive
leaps, which can markedly improve the algorithm's
capacity to investigate remote and potentially
superior areas of the search space (25, 26).

The D-SDS incorporates two more phases inside
the SDS algorithm.

Levy Flight Step: Execute Levy Flight steps to
intermittently relocate agents to remote areas of
the search space. This facilitates the avoidance of
local optima and guarantees enhanced exploration.
The Levy Flight step is mathematically expressed
as in equation [3]:

L(A)=1/[1At[]*(1+A) [3]

Where At represents a minor time increment, and
A is the Levy distribution parameter (often 0< A<
2).

Implement an adaptive fitness threshold method
to direct the agents in the search process. Modify
the fitness threshold adaptively according to the
population's performance over iterations. The
population's fitness exhibit minimal enhancement
over several iterations, up the threshold to
promote If
substantial improvement is noted, lower the
barrier to emphasize exploitation.

D-SDS was chosen over other meta-heuristic

exploration of novel regions.

techniques due to its unique ability to balance
exploration and exploitation, which is critical for
optimizing complex deep learning architectures.
Unlike conventional methods, D-SDS effectively
mitigates the risk of local optima using
discrimination strategies, making it particularly
suitable for handling the high-dimensional, locally
inputs typical of EEG-based BCI
systems. The proposed D-SDS methodology can be
observed from Figure 1 and the two integral
algorithmic components which are represented in
subsequent sections (Table 1 and 2).

correlated
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Figure 1: Methodology of Proposed Discriminated SDS

Table 1: Algorithm - Discriminated-SDS for Channel Selection

Vol 7 | Issue 1

Algorithm - Discriminated-SDS for Channel Selection
Input:
EEG dataset D with N channels
Initial parameters: a, 8, A, max_iter, §, threshold bounds
Classifier model (e.g., Adaboost, VGG)
Output:
Optimal subset of EEG channels
1. Initialize population of agents with random channel subsets
2. Set initial fitness threshold T
3. For each agent:
a. Randomly select a hypothesis (subset of channels)
4. Repeat until max_iter or convergence:
a. Evaluate fitness using:
f(x) = a*exp(-1/C) + B * MSE
b. For each agent:
i. Compare fitness with a randomly selected neighbor
ii. If worse:
- Replace hypothesis using neighbor's OR
- Apply Levy Flight with probability p_levy
iii. If better:
- Retain current hypothesis
c. Update adaptive threshold T:
If mean fitness improvement < ¢ for k iterations = T += §
Else > T-=6
5. Select agent(s) with highest fitness scores
6. Return best-performing subset of EEG channels
End
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Table 2: Algorithm - Discriminated-SDS for Hyper parameter Tuning
Algorithm - Discriminated-SDS for Hyperparameter Tuning

Input:
EEG dataset D
Deep learning model architecture M (VGGNet / ResNet / InceptionNet)
Hyperparameter search space:
Learning rate € [0.00001, 0.0001, 0.001, 0.01, 0.1]
Batch size € {32, 64, 128, 256}
Dropout rate € [0, 0.1,...,0.5]
Epochs € [50,...., 200]
Number of agents N
Maximum iterations T
Fitness weights a=0.6, 3=0.4
Output:
Optimal hyperparameter configuration H* with highest fitness score
Initialize:

Create a population of N agents.
Assign each agent a random hyperparameter configuration Hi.
Evaluate Initial Fitness:
For each agent:
Train model M with Hi
Compute validation loss (MSE) and model complexity penalty
Evaluate fitness
Repeat for each iteration (1 to T):
a. Diffusion Step:
For each agent Ai:
Randomly select peer agent Aj

If f(Hj)>f(Hi):

Replace Hi with Hj
Else:

Retain Hi

b. Stagnation Check and Levy Flight:
If no significant improvement in average fitness for k iterations:
Apply Levy Flight to generate new Hi for exploration.

c. Re-evaluate Fitness:
Train model using updated configurations
Update fitness scores

Select Optimal Agent:
Identify agent A* with highest fitness score

End

Results

In this section, evaluate the SDS and D-SDS tasks of 5 subjects were used. Each subject has
algorithm, the classification methods using recordings from multiple sessions. The first two
Adaboost, hyperparameter tunned VGGNET, sessions are for training; the third is for testing.
hyperparameter tunned Resnet and The summary of results is presented in Table 3.
hyperparameter tunned InceptionNet. BCI The accuracy, precision, recall and F-measure as
Competition III - Dataset IVa was used for shown in Figure 2 to 5.

evaluating the algorithms. Motor Imagery (MI)
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Table 3: Summary of Result

Vol 7 | Issue 1

SDs D-SDS SDS SDS SDS D-SDS D-SDS D-SDS
Adaboost Adaboost Hyperparameter HyperParameter Hyper] Hyper) HyperParameter Hyperparameter
tuned VGGNET Tuned Resnet Tuned tuned VGGNET Tuned Resnet Tuned
i InceptionNet
Classification 0.9194 0.9324 0.9378 0.9564 0.9617 0.9778 0.9731 0.9903
accuracy
Precision for 0.9209 0.9352 0.9378 0.9543 0.9655 0.9804 0.971 0.983
right
Precision for 0.9123 0.9301 0.9272 0.9381 0.9649 0.9894 0.9555 0.9746
foot
Recall for right 0.9363 0.9529 0.9509 0.964 0.9835 0.9819 0.9805 0.9964
Recall for foot 0.8928 0.9104 0.9045 0.9213 0.9408 0.9665 0.9378 0.949
F measure for 0.9288 0.944 0.9412 0.9511 0.974 0.9936 0.9684 0.9836
right
F measure for 0.9057 0.9231 0.9164 0.9269 0.9518 0.9727 0.9434 0.959
foot
H Adaboost

B 5 Hyperparameter tuned

g VGGNET

Z O HyperParameter Tun

& ~  Resnet

=~

=

‘VZ

=

o

Technique (Name)
Figure 2: Accuracy for D-SDS
m Adaboost

= Hyperparameter funed

o VGGNET

= mHyperParameter Tuned
g  Resnet

=

£

g

o

g

-9

echnique (Nam

Figure 3: Precision for D-SDS
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H Adaboost

B Hyperparameter tuned
VGGNET

= HyperParameter Tuned
Resnet

© Hyperparameter Tuned
InceptionNet

Recall (Name)

[echnique (Name

Figure 4: Recall for D-SDS

= Adaboost

= Hyperparameter tuned
VGGNET

B HyperParameter Tuned
Resnet

© Hyperparameter Tuned
InceptionNet

F Measure (Ratio)

Technique (Name)

Figure 5: F Measure for D-SDS

Discussion

The baseline Adaboost classifier achieved an
accuracy of 0.9324 when optimized using D-SDS as
observed in Figure 2. This demonstrates the
enhanced capability of Discriminated-SDS to
escape local optima and better optimize hyper
parameters. D-SDS dramatically improved the
accuracy to 0.9778. This substantial enhancement
underscores the advantage of D-SDS in fine-tuning
the hyper parameters of deep CNNs like VGGNet,
leading to near-optimal configurations. The
accuracy further increased to 0.9731 with D-SDS
Inception. This result indicates that D-SDS
effectively addresses the local optima problem and
enhances ResNet's performance by Dbetter
navigating the hyperparameter space.

The baseline Adaboost classifier, when optimised
using D-SDS, achieved a precision of 0.932, as
shown in Figure 3. Hyperparameter tuned VGGNet
classifier achieved precision of 0.984 when
optimized using D-SDS. Hyperparameter tuned

553

ResNet classifier achieved the precision of 0.963
when optimized using D-SDS. Hyperparameter
tuned InceptionNet classifier achieved the
precision of 0.978 when optimized using D-SDS. It
can be observed in Figure 4 that the baseline
Adaboost classifier achieved the recall of 0.932
when optimized using D-SDS. Hyperparameter
tuned VGGNet classifier achieved recall of 0.986
when optimized using D-SDS. Hyperparameter
tuned ResNet classifier achieved the recall of 0.959
when optimized using D-SDS. Hyperparameter
tuned InceptionNet classifier achieved the recall of
0.973 when optimized using D-SDS.

It can be observed in Figure 5 that the baseline
Adaboost classifier achieved the F-measure of
0.9335 when  optimized using D-SDS.
Hyperparameter tuned VGGNet classifier achieved
F-measure of 0.983when optimized using D-SDS.
Hyperparameter tuned ResNet classifier achieved
the F-measure of 0.956 when optimized using D-
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SDS.  Hyperparameter tuned InceptionNet
classifier achieved the F-measure of 0.971 when

optimized using D-SDS.

Conclusion

Hyperparameter optimization plays a crucial role
in enhancing machine learning model performance
by ensuring better generalization, preventing over
fitting, stabilizing training, improving
computational efficiency. This study highlights the
efficacy of SDS and D-SDS in navigating the
hyperparameter space for EEG-based BCls. By
dynamically refining exploration techniques and
fitness evaluation criteria, Discriminated-SDS
demonstrated significant improvements across all
models. For instance, Adaboost's accuracy
improved from 0.9194 with SDS to 0.9324 with D-
SDS, VGGNet increased from 0.9378 to 0.9778,
ResNet rose from 0.9564 to 0.9731, and
InceptionNet achieved the most significant
enhancement, from 0.9617 to 0.9903.

The study’s findings emphasize the transformative
potential of D-SDS for optimizing deep learning
architectures and ensemble techniques, setting a
benchmark  for research.  These
advancements provide a scalable framework for
addressing high-dimensional data challenges, with
implications extending beyond BCIs to other
domains such as natural language processing and

and

future

medical imaging. Future work could focus on
applying this framework to real-time BCI systems,
enhancing  computational efficiency,
integrating it with more advanced architectures to
further improve performance and adaptability in
diverse applications.

and
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